Suppr超能文献

使用基于小波的滤波器自动提取吞咽声音。

Automated extraction of swallowing sounds using a wavelet-based filter.

作者信息

Aboofazeli Mohammad, Moussavi Zahra

机构信息

Department of Electrical & Computer Engineering, Manitoba University, Winnipeg, MB, Canada.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5607-10. doi: 10.1109/IEMBS.2006.259353.

Abstract

This paper presents an automated and objective method for extraction of swallowing sounds in a record of the tracheal breath and swallowing sounds. The proposed method takes advantage of the fact that swallowing sounds have more non-stationarity comparing with breath sounds and have large components in many wavelet scales whereas wavelet transform coefficients of breath sounds in higher wavelet scales are small. Therefore, a wavelet transform based filter was utilized in which a multiresolution decomposition-reconstruction process filters the signal. Swallowing sounds are detected in the filtered signal. The proposed method was applied to the tracheal sound recordings of 15 healthy and 11 dysphagic subjects. The results were validated manually by visual inspection using airflow measurement and spectrogram of the sounds and auditory means. Experimental results prove that the proposed method is more accurate, efficient, and objective than the methods proposed previously. Swallowing sound detection may be employed in a system for automated swallowing assessment and diagnosis of swallowing disorders (dysphagia) by acoustical means.

摘要

本文提出了一种自动且客观的方法,用于在气管呼吸音和吞咽音记录中提取吞咽音。所提出的方法利用了这样一个事实:与呼吸音相比,吞咽音具有更多的非平稳性,并且在许多小波尺度上具有较大的分量,而较高小波尺度上呼吸音的小波变换系数较小。因此,采用了一种基于小波变换的滤波器,其中多分辨率分解 - 重构过程对信号进行滤波。在滤波后的信号中检测吞咽音。所提出的方法应用于15名健康受试者和11名吞咽困难受试者的气管音记录。通过使用气流测量、声音频谱图和听觉手段进行目视检查,手动验证结果。实验结果证明,所提出的方法比先前提出的方法更准确、高效且客观。吞咽音检测可用于通过声学手段进行自动吞咽评估和吞咽障碍(吞咽困难)诊断的系统中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验