Kluger Yuval, Kluger Harriet, Tuck David
Dept. of Cell Biol., New York Univ. Sch. of Medicine, NY, NY 10016, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2036-40. doi: 10.1109/IEMBS.2006.260730.
During cell progression from one state to another, such as transformation from benign to malignant conditions, cells undergo changes in gene regulation. To reveal state-dependent circuitries in human regulatory networks, we employed drafts of normal and malignant cell networks. Using these condition specific networks, gene profiles and annotated pathways we studied: a) the capacity to separate samples or cell states based on the collective expression of all the genes in each pathway rather than individual genes, b) the degree of regulatory network connectivity within and between pathways. Distinct cell types reveal notable differences in transcriptional activity in numerous pathways. On the other hand, in datasets from breast cancer patients with variable outcome the capacity of single pathway expression signatures to predict disease outcome is very limited, though this can be somewhat improved by combining multiple pathways. Remarkable connectivity between pathways on the transcriptional regulatory level revealed a non-modular network structure. Overall, network blueprints enable us to quantify the degree of interaction between condition specific co-regulated pathways. This can contribute to understanding deregulated processes associated with cancer.
在细胞从一种状态转变为另一种状态的过程中,例如从良性状态转变为恶性状态,细胞会经历基因调控的变化。为了揭示人类调控网络中依赖状态的回路,我们采用了正常细胞和恶性细胞网络的草图。利用这些特定条件的网络、基因图谱和注释通路,我们研究了:a)基于每个通路中所有基因的集体表达而非单个基因来区分样本或细胞状态的能力,b)通路内部和之间的调控网络连接程度。不同的细胞类型在众多通路中的转录活性显示出显著差异。另一方面,在来自预后不同的乳腺癌患者的数据集中,单通路表达特征预测疾病预后的能力非常有限,不过通过组合多个通路可在一定程度上有所改善。转录调控水平上通路之间显著的连接性揭示了一种非模块化的网络结构。总体而言,网络蓝图使我们能够量化特定条件下共同调控通路之间的相互作用程度。这有助于理解与癌症相关的失调过程。