Suppr超能文献

用于基因表达数据的生物监督层次聚类算法。

Biologically supervised hierarchical clustering algorithms for gene expression data.

作者信息

Boratyn Grzegorz M, Datta Susmita, Datta Somnath

机构信息

Kidney Disease program and Clinical Proteomics Center, University of Louisville, KY, USA.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5515-8. doi: 10.1109/IEMBS.2006.260308.

Abstract

Cluster analysis has become a standard part of gene expression analysis. In this paper, we propose a novel semi-supervised approach that offers the same flexibility as that of a hierarchical clustering. Yet it utilizes, along with the experimental gene expression data, common biological information about different genes that is being complied at various public, Web accessible databases. We argue that such an approach is inherently superior than the standard unsupervised approach of grouping genes based on expression data alone. It is shown that our biologically supervised methods produce better clustering results than the corresponding unsupervised methods as judged by the distance from the model temporal profiles. R-codes of the clustering algorithm are available from the authors upon request.

摘要

聚类分析已成为基因表达分析的标准组成部分。在本文中,我们提出了一种新颖的半监督方法,该方法具有与层次聚类相同的灵活性。然而,它除了利用实验基因表达数据外,还利用了在各种可通过网络访问的公共数据库中汇编的关于不同基因的常见生物学信息。我们认为,这种方法本质上优于仅基于表达数据对基因进行分组的标准无监督方法。结果表明,根据与模型时间轮廓的距离判断,我们的生物监督方法比相应的无监督方法产生更好的聚类结果。聚类算法的R代码可应作者要求提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验