Grimme Stefan, Neese Frank
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany.
J Chem Phys. 2007 Oct 21;127(15):154116. doi: 10.1063/1.2772854.
Double-hybrid density functionals are based on a mixing of standard generalized gradient approximations (GGAs) for exchange and correlation with Hartree-Fock (HF) exchange and a perturbative second-order correlation part (PT2) that is obtained from the Kohn-Sham (GGA) orbitals and eigenvalues. This virtual orbital-dependent functional (dubbed B2PLYP) contains only two empirical parameters that describe the mixture of HF and GGA exchange (ax) and of the PT2 and GGA correlation (ac), respectively. Extensive testing has recently demonstrated the outstanding accuracy of this approach for various ground state problems in general chemistry applications. The method is extended here without any further empirical adjustments to electronically excited states in the framework of time-dependent density functional theory (TD-DFT) or the closely related Tamm-Dancoff approximation (TDA-DFT). In complete analogy to the ground state treatment, a scaled second-order perturbation correction to configuration interaction with singles (CIS(D)) wave functions developed some years ago by Head-Gordon et al. [Chem. Phys. Lett. 219, 21 (1994)] is computed on the basis of density functional data and added to the TD(A)-DFTGGA excitation energy. The method is implemented by applying the resolution of the identity approximation and the efficiency of the code is discussed. Extensive tests for a wide variety of molecules and excited states (of singlet, triplet, and doublet multiplicities) including electronic spectra are presented. In general, rather accurate excitation energies (deviations from reference data typically <0.2 eV) are obtained that are mostly better than those from standard functionals. Still, systematic errors are obtained for Rydberg (too low on average by about 0.3 eV) and charge-transfer transitions but due to the relatively large ax parameter (0.53), B2PLYP outperforms most other functionals in this respect. Compared to conventional HF-based CIS(D), the method is more robust in electronically complex situations due to the implicit account of static correlation effects by the GGA parts. The (D) correction often works in the right direction and compensates for the overestimation of the transition energy at the TD level due to the elevated fraction of HF exchange in the hybrid GGA part. Finally, the limitations of the method are discussed for challenging systems such as transition metal complexes, cyanine dyes, and multireference cases.
双杂化密度泛函基于标准广义梯度近似(GGA)用于交换和关联与哈特里 - 福克(HF)交换的混合,以及从科恩 - Sham(GGA)轨道和本征值获得的微扰二阶关联部分(PT2)。这种依赖于虚拟轨道的泛函(称为B2PLYP)仅包含两个经验参数,分别描述HF和GGA交换的混合(ax)以及PT2和GGA关联的混合(ac)。最近广泛的测试表明,该方法在一般化学应用中的各种基态问题上具有出色的准确性。在此,该方法在含时密度泛函理论(TD - DFT)或密切相关的塔姆 - 丹科夫近似(TDA - DFT)框架内扩展到电子激发态,且无需任何进一步的经验调整。与基态处理完全类似,基于密度泛函数据计算几年前由黑德 - 戈登等人[《化学物理快报》219, 21 (1994)]开发的对单激发组态相互作用(CIS(D))波函数的缩放二阶微扰校正,并将其添加到TD(A) - DFT GGA激发能中。该方法通过应用单位分解近似来实现,并讨论了代码的效率。给出了对各种分子和激发态(单重态、三重态和二重态多重性)包括电子光谱的广泛测试。一般来说,能获得相当准确的激发能(与参考数据的偏差通常<0.2 eV),大多优于标准泛函得到的结果。不过,对于里德堡跃迁(平均偏低约0.3 eV)和电荷转移跃迁仍存在系统误差,但由于相对较大的ax参数(0.53),B2PLYP在这方面优于大多数其他泛函。与传统基于HF的CIS(D)相比,由于GGA部分隐含地考虑了静态相关效应,该方法在电子复杂情况下更稳健。(D)校正通常朝着正确的方向起作用,并补偿由于混合GGA部分中HF交换比例升高而在TD水平上对跃迁能的高估。最后,针对诸如过渡金属配合物、花青染料和多参考情况等具有挑战性的体系,讨论了该方法的局限性。