Suppr超能文献

基于杂化泛函和定域基组方法的金红石型(110)TiO₂表面扫描隧道显微镜图像模拟

Scanning tunneling microscopy image simulation of the rutile (110) TiO2 surface with hybrid functionals and the localized basis set approach.

作者信息

Di Valentin Cristiana

机构信息

Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 53, 20125 Milano, Italy.

出版信息

J Chem Phys. 2007 Oct 21;127(15):154705. doi: 10.1063/1.2790430.

Abstract

In this work we present a simplified procedure to use hybrid functionals and localized atomic basis sets to simulate scanning tunneling microscopy (STM) images of stoichiometric, reduced and hydroxylated rutile (110) TiO2 surface. For the two defective systems it is necessary to introduce some exact Hartree-Fock exchange in the exchange functional in order to correctly describe the details of the electronic structure. Results are compared to the standard density functional theory and planewave basis set approach. Both methods have advantages and drawbacks that are analyzed in detail. In particular, for the localized basis set approach, it is necessary to introduce a number of Gaussian function in the vacuum region above the surface in order to correctly describe the exponential decay of the integrated local density of states from the surface. In the planewave periodic approach, a thick vacuum region is required to achieve correct results. Simulated STM images are obtained for both the reduced and hydroxylated surface which nicely compare with experimental findings. A direct comparison of the two defects as displayed in the simulated STM images indicates that the OH groups should appear brighter than oxygen vacancies in perfect agreement with the experimental STM data.

摘要

在这项工作中,我们提出了一种简化程序,用于使用杂化泛函和定域原子基组来模拟化学计量比的、还原的和羟基化的金红石(110)TiO₂ 表面的扫描隧道显微镜(STM)图像。对于这两个缺陷体系,有必要在交换泛函中引入一些精确的哈特里 - 福克交换,以便正确描述电子结构的细节。将结果与标准密度泛函理论和平面波基组方法进行了比较。详细分析了这两种方法的优缺点。特别是,对于定域基组方法,有必要在表面上方的真空区域引入一些高斯函数,以便正确描述表面上积分局域态密度的指数衰减。在平面波周期性方法中,需要一个厚的真空区域才能获得正确的结果。获得了还原表面和羟基化表面的模拟STM图像,这些图像与实验结果很好地吻合。模拟STM图像中显示的两种缺陷的直接比较表明,OH基团应该比氧空位更亮,这与实验STM数据完全一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验