Linninger Andreas A, Somayaji Mahadevabharath R, Mekarski Megan, Zhang Libin
Laboratory for Product and Process Design, Department of Chemical and Bioengineering, University of Illinois, 851 S. Morgan St. 218 SEO, Chicago, IL 60607, USA.
J Theor Biol. 2008 Jan 7;250(1):125-38. doi: 10.1016/j.jtbi.2007.09.009. Epub 2007 Sep 14.
The treatment for many neurodegenerative diseases of the central nervous system (CNS) involves the delivery of large molecular weight drugs to the brain. The blood brain barrier, however, prevents many therapeutic molecules from entering the CNS. Despite much effort in studying drug dispersion with animal models, accurate drug targeting in humans remains a challenge. This article proposes an engineering approach for the systematic design of targeted drug delivery into the human brain. The proposed method predicts achievable volumes of distribution for therapeutic agents based on first principles transport and chemical kinetics models as well as accurate reconstruction of the brain geometry from patient-specific diffusion tensor magnetic resonance imaging. The predictive capabilities of the methodology will be demonstrated for invasive intraparenchymal drug administration. A systematic procedure to determine the optimal infusion and catheter design parameters to maximize penetration depth and volumes of distribution in the target area will be discussed. The computational results are validated with agarose gel phantom experiments. The methodology integrates interdisciplinary expertise from medical imaging and engineering. This approach will allow physicians and scientists to design and optimize drug administration in a systematic fashion.
许多中枢神经系统(CNS)神经退行性疾病的治疗涉及将大分子量药物输送到大脑。然而,血脑屏障会阻止许多治疗分子进入中枢神经系统。尽管在利用动物模型研究药物扩散方面付出了很多努力,但在人体中实现精确的药物靶向仍然是一个挑战。本文提出了一种工程方法,用于系统设计靶向药物输送到人类大脑的过程。所提出的方法基于第一原理传输和化学动力学模型以及从患者特异性扩散张量磁共振成像精确重建大脑几何结构,预测治疗药物可达到的分布容积。该方法的预测能力将针对有创脑实质内药物给药进行展示。将讨论一种系统程序,以确定最佳输注和导管设计参数,以最大化目标区域的渗透深度和分布容积。计算结果通过琼脂糖凝胶体模实验进行验证。该方法整合了医学成像和工程学的跨学科专业知识。这种方法将使医生和科学家能够以系统的方式设计和优化药物给药。