Molinos Eduardo, Brayshaw Simon K, Kociok-Köhn Gabrielle, Weller Andrew S
Department of Chemistry, University of Bath, Bath, UK BA2 7AY.
Dalton Trans. 2007 Nov 14(42):4829-44. doi: 10.1039/b711468k. Epub 2007 Oct 1.
Addition of the new phosphonium carborane salts [HPR(3)][closo-CB(11)H(6)X(6)] (R = (i)Pr, Cy, Cyp; X = H 1a-c, X = Br 2a-c; Cy = C(6)H(11), Cyp = C(5)H(9)) to Rh(nbd)(mu-OMe) under a H(2) atmosphere gives the complexes Rh(PR(3))H(2)(closo-CB(11)H(12)) 3 (R = (i)Pr 3a, Cy 3b, Cyp 3c) and Rh(PR(3))H(2)(closo-CB(11)H(6)Br(6)) 4 (R = (i)Pr 4a, Cy 4b, Cyp 4c). These complexes have been characterised spectroscopically, and for 4b by single crystal X-ray crystallography. These data show that the {Rh(PR(3))H(2)}(+) fragment is interacting with the lower hemisphere of the closo-CB(11)H(6)X(6) anion on the NMR timescale, through three Rh-H-B or Rh-Br interactions for complexes 3 and 4 respectively. The metal fragment is fluxional over the lower surface of the cage anion, and mechanisms for this process are discussed. Complexes 3a-c are only stable under an atmosphere of H(2). Removing this, or placing under a vacuum, results in H(2) loss and the formation of the dimer species Rh(2)(PR(3))(2)(closo-CB(11)H(12))(2) 5a (R = (i)Pr), 5b (R = Cy), 5c (R = Cyp). These dimers have been characterised spectroscopically and for 5b by X-ray diffraction. The solid state structure shows a dimer with two closely associated carborane monoanions surrounding a Rh(2)(PCy(3))(2) core. One carborane interacts with the metal core through three Rh-H-B bonds, while the other interacts through two Rh-H-B bonds and a direct Rh-B link. The electronic structure of this molecule is best described as having a dative Rh(I) --> Rh(III), d(8)--> d(6), interaction and a formal electron count of 16 and 18 electrons for the two rhodium centres respectively. Addition of H(2) to complexes 5a-c regenerate 3a-c. Addition of alkene (ethene or 1-hexene) to 5a-c or 3a-c results in dehydrogenative borylation, with 1, 2, and 3-B-vinyl substituted cages observed by ESI-MS: closo-(RHC[double bond, length as m-dash]CH)(x)CB(11)H(12-x)x = 1-3, R = H, C(4)H(9). Addition of H(2) to this mixture converts the B-vinyl groups to B-ethyl; while sequential addition of 4 cycles of ethene (excess) and H(2) to CH(2)Cl(2) solutions of 5a-c results in multiple substitution of the cage (as measured by ESI-MS), with an approximately Gaussian distribution between 3 and 9 substitutions. Compositionally pure material was not obtained. Complexes 4a-c do not lose H(2). Addition of tert-butylethene (tbe) to 4a gives the new complex Rh(P(i)Pr(3))(eta(2)-H(2)C=CH(t)Bu)(closo-CB(11)H(6)Br(6)) 6, characterised spectroscopically and by X-ray diffraction, which show coordination of the alkene ligand and bidentate coordination of the closo-CB(11)H(6)Br(6) anion. By contrast, addition of tbe to 4b or 4c results in transfer dehydrogenation to give the rhodium complexes Rh{PCy(2)(eta(2)-C(6)H(9))}(closo-CB(11)H(6)Br(6)) 7 and Rh{PCyp(2)(eta(2)-C(5)H(7))}(closo-CB(11)H(6)Br(6)) 9, which contain phosphine-alkene ligands. Complex has been characterised crystallographically.
在氢气氛围下,将新型鏻碳硼烷盐[HPR(3)][closo-CB(11)H(6)X(6)](R = (i)Pr、Cy、Cyp;X = H 1a - c,X = Br 2a - c;Cy = C(6)H(11),Cyp = C(5)H(9))加入到Rh(nbd)(μ-OMe)中,得到配合物Rh(PR(3))H(2)(closo-CB(11)H(12)) 3(R = (i)Pr 3a,Cy 3b,Cyp 3c)和Rh(PR(3))H(2)(closo-CB(11)H(6)Br(6)) 4(R = (i)Pr 4a,Cy 4b,Cyp 4c)。这些配合物已通过光谱进行了表征,并且配合物4b通过单晶X射线晶体学进行了表征。这些数据表明,在核磁共振时间尺度上,{Rh(PR(3))H(2)}(+)片段分别通过与配合物3和4中的三个Rh - H - B或Rh - Br相互作用,与closo-CB(11)H(6)X(6)阴离子的下半部分相互作用。金属片段在笼状阴离子的下表面上是流动的,并讨论了该过程的机制。配合物3a - c仅在氢气氛围下稳定。去除氢气或将其置于真空中会导致氢气损失并形成二聚体物种Rh(2)(PR(3))(2)(closo-CB(11)H(12))(2) 5a(R = (i)Pr)、5b(R = Cy)、5c(R = Cyp)。这些二聚体已通过光谱进行了表征,并且配合物5b通过X射线衍射进行了表征。固态结构显示一个二聚体,两个紧密相连的碳硼烷单阴离子围绕着一个Rh(2)(PCy(3))(2)核心。一个碳硼烷通过三个Rh - H - B键与金属核心相互作用,而另一个通过两个Rh - H - B键和一个直接的Rh - B连接相互作用。该分子的电子结构最好描述为具有一个配位的Rh(I)→Rh(III),d(8)→d(6)相互作用,并且两个铑中心的形式电子数分别为16和18个电子。向配合物5a - c中加入氢气会再生3a - c。向5a - c或3a - c中加入烯烃(乙烯或1 - 己烯)会导致脱氢硼化反应,通过电喷雾电离质谱观察到1、2和3 - B - 乙烯基取代的笼状结构:closo-(RHC[双键,长度如m破折号]CH)(x)CB(11)H(12 - x) x = 1 - 3,R = H,C(4)H(9)。向该混合物中加入氢气会将B - 乙烯基转化为B - 乙基;而向5a - c的二氯甲烷溶液中依次加入4个循环的乙烯(过量)和氢气会导致笼状结构的多次取代(通过电喷雾电离质谱测量),取代次数在3到9次之间呈现近似高斯分布。未获得组成纯的材料。配合物4a - c不会损失氢气。向4a中加入叔丁基乙烯(tbe)得到新的配合物Rh(P(i)Pr(3))(η(2)-H(2)C=CH(t)Bu)(closo-CB(11)H(6)Br(6)) 6,通过光谱和X射线衍射进行了表征,其显示了烯烃配体的配位以及closo-CB(11)H(6)Br(6)阴离子的双齿配位。相比之下,向4b或4c中加入tbe会导致转移脱氢反应,生成铑配合物Rh{PCy(2)(η(2)-C(6)H(9))}(closo-CB(11)H(6)Br(6)) 7和Rh{PCyp(2)(η(2)-C(5)H(7))}(closo-CB(11)H(6)Br(6)) 9,它们含有膦 - 烯烃配体。该配合物已通过晶体学进行了表征。