Csikász-Nagy Attila, Gyorffy Béla, Alt Wolfgang, Tyson John J, Novák Béla
Materials Structure and Modelling Research Group of the Hungarian Academy of Sciences, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
Yeast. 2008 Jan;25(1):59-69. doi: 10.1002/yea.1571.
Because of its regular shape, fission yeast is becoming an increasingly important organism in the study of cellular morphogenesis. Genetic experiments with mutants and drug treatment studies with wild-type cells have revealed the importance of microtubules in controlling new growth zone formation. It is believed that microtubules exert this role by delivering to cell ends a 'dynamic landmark' protein, tea1p, which promotes actin polymerization and growth zone formation. Here we present a simple model for fission yeast morphogenesis that describes the interplay between these two cytoskeletal elements. An essential assumption of the model is that actin polymerization is a self-reinforcing process: filamentous actin promotes its own formation from globular actin subunits via regulatory molecules. In our model, microtubules stimulate actin polymerization by delivering a component of the autocatalytic actin-assembly feedback loop (not by delivering a de novo inducer of actin polymerization). We show that the model captures all the characteristic features of polarized growth in fission yeast during normal mitotic cycles. We categorize the types of growth patterns that can exist in the model and show that they correspond to the major classes of morphogenetic mutants (monopolar, orb, banana and tea). Based on these results, we propose that fission yeast cells have specific size ranges in which they can exhibit two or more different stable patterns of growth.
由于其形状规则,裂殖酵母在细胞形态发生研究中变得越来越重要。对突变体进行的遗传实验以及对野生型细胞进行的药物处理研究揭示了微管在控制新生长区形成中的重要性。据信微管通过向细胞末端传递一种“动态地标”蛋白tea1p来发挥这一作用,该蛋白促进肌动蛋白聚合和生长区形成。在此,我们提出了一个用于裂殖酵母形态发生的简单模型,该模型描述了这两种细胞骨架成分之间的相互作用。该模型的一个基本假设是肌动蛋白聚合是一个自我强化的过程:丝状肌动蛋白通过调节分子促进其自身由球状肌动蛋白亚基形成。在我们的模型中,微管通过传递自催化肌动蛋白组装反馈环的一个成分来刺激肌动蛋白聚合(而非通过传递肌动蛋白聚合的从头诱导剂)。我们表明该模型捕捉到了正常有丝分裂周期中裂殖酵母极化生长的所有特征。我们对模型中可能存在的生长模式类型进行了分类,并表明它们对应于主要的形态发生突变体类别(单极、orb、香蕉型和tea型)。基于这些结果,我们提出裂殖酵母细胞具有特定的大小范围,在这个范围内它们可以表现出两种或更多种不同的稳定生长模式。