Suppr超能文献

SAR图谱:一种供药物化学家使用的新型SAR可视化技术。

SAR maps: a new SAR visualization technique for medicinal chemists.

作者信息

Agrafiotis Dimitris K, Shemanarev Maxim, Connolly Peter J, Farnum Michael, Lobanov Victor S

机构信息

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 665 Stockton Drive, Exton, PA 19341, USA.

出版信息

J Med Chem. 2007 Nov 29;50(24):5926-37. doi: 10.1021/jm070845m. Epub 2007 Oct 25.

Abstract

We present structure-activity relationship (SAR) maps, a new, intuitive method for visualizing SARs targeted specifically at medicinal chemists. The method renders an R-group decomposition of a chemical series as a rectangular matrix of cells, each representing a unique combination of R-groups and thus a unique compound. Color-coding the cells by chemical property or biological activity allows patterns to be easily identified and exploited. SAR maps allow the medicinal chemist to interactively analyze complicated datasets with multiple R-group dimensions, rapidly correlate substituent structure and biological activity, assess additivity of substituent effects, identify missing analogs and screening data, and create compelling graphical representations for presentation and publication. We believe that this method fills a long-standing gap in the medicinal chemist's toolset for understanding and rationalizing SAR.

摘要

我们展示了构效关系(SAR)图,这是一种专门为药物化学家设计的直观可视化SAR的新方法。该方法将化学系列的R基团分解呈现为一个矩形的单元格矩阵,每个单元格代表R基团的独特组合,从而代表一种独特的化合物。通过化学性质或生物活性对单元格进行颜色编码,可以轻松识别和利用模式。SAR图使药物化学家能够交互式地分析具有多个R基团维度的复杂数据集,快速关联取代基结构和生物活性,评估取代基效应的加和性,识别缺失的类似物和筛选数据,并创建引人注目的图形表示用于展示和发表。我们相信,这种方法填补了药物化学家在理解和合理化SAR的工具集中长期存在的空白。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验