Shen F, Fan Y, Su H, Zhu Y, Chen Y, Liu W, Young W L, Yang G-Y
Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, CA 94110, USA.
Gene Ther. 2008 Jan;15(1):30-9. doi: 10.1038/sj.gt.3303048. Epub 2007 Oct 25.
Uncontrolled expression of vascular endothelial growth factor (VEGF) in vivo may cause unexpected side effects, such as brain hemangioma or tumor growth. Because hypoxia-inducible factor-1 (HIF-1) is upregulated during cerebral ischemia and regulates gene expression by binding to a cis-acting hypoxia-responsive element (HRE), we therefore used a novel HRE, originating in the 3'-end of the erythropoietin (Epo) gene, to control gene expression in the ischemic brain. A concatemer of nine copies (H9) of the consensus sequence of HRE was used to mediate hypoxia induction. Three groups of adult CD-1 mice received AAVH9-VEGF, AAVH9-lacZ or saline injection, and then underwent 45 min of transient middle cerebral artery occlusion (tMCAO). Results show that HIF-1 was persistently expressed in the ischemic brain. VEGF was overexpressed in the ischemic perifocal region in AAVH9-VEGF-transduced mice. Double-labeled immunostaining showed that VEGF expressed in neurons and astrocytes but not endothelial cells, suggesting that adeno-associated virus (AAV) vectors transduced neurons and astrocytes predominantly. The total number of microvessels/enlarged microvessels was greatly increased in the AAVH9-VEGF-transduced mice (180+/-29/27+/-4) compared to the AAVH9-lacZ (118+/-19/14+/-3) or saline-treated (119+/-20/14+/-2) mice after tMCAO (P<0.05). Cell proliferation examination demonstrated that these microvessels were newly formed. Regional cerebral blood flow recovery in the AAVH9-VEGF-transduced mice was also better than in AAVH9-lacZ or saline-treated mice (P<0.05). Our data indicated that HRE is a novel trigger for the control of VEGF expression in the ischemic brain. VEGF overexpression through AAVH9-VEGF gene transfer showed stable focal angiogenic effects in post-ischemic repair process, providing an opportunity to rebuild injured brain tissue.
血管内皮生长因子(VEGF)在体内的失控表达可能会导致意想不到的副作用,如脑血管瘤或肿瘤生长。由于缺氧诱导因子-1(HIF-1)在脑缺血期间上调,并通过与顺式作用缺氧反应元件(HRE)结合来调节基因表达,因此我们使用了一种源自促红细胞生成素(Epo)基因3'端的新型HRE,来控制缺血脑中的基因表达。HRE共有序列的九个拷贝(H9)的串联体用于介导缺氧诱导。三组成年CD-1小鼠分别接受AAVH9-VEGF、AAVH9-lacZ或生理盐水注射,然后进行45分钟的短暂大脑中动脉闭塞(tMCAO)。结果显示,HIF-1在缺血脑中持续表达。在AAVH9-VEGF转导的小鼠中,VEGF在缺血灶周围区域过度表达。双重免疫染色显示,VEGF在神经元和星形胶质细胞中表达,但在内皮细胞中不表达,这表明腺相关病毒(AAV)载体主要转导神经元和星形胶质细胞。与tMCAO后接受AAVH9-lacZ(118±19/14±3)或生理盐水处理(119±20/14±2)的小鼠相比,AAVH9-VEGF转导的小鼠中微血管/扩张微血管的总数大大增加(180±29/27±4)(P<0.05)。细胞增殖检查表明这些微血管是新形成的。AAVH9-VEGF转导的小鼠局部脑血流恢复情况也优于AAVH9-lacZ或生理盐水处理的小鼠(P<0.05)。我们的数据表明,HRE是控制缺血脑中VEGF表达的一种新型触发因素。通过AAVH9-VEGF基因转移实现的VEGF过表达在缺血后修复过程中显示出稳定的局部血管生成作用,为重建受损脑组织提供了机会。