Faux Clare, Hawadle Muhamed, Nixon Jennifer, Wallace Adam, Lee Simon, Murray Simon, Stoker Andrew
Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
Biochim Biophys Acta. 2007 Nov;1773(11):1689-700. doi: 10.1016/j.bbamcr.2007.06.008. Epub 2007 Jul 13.
Neurotrophin receptors of the Trk family play a vital role in the survival of developing neurons and the process of axonogenesis. The Trk family are receptor protein tyrosine kinases (RTKs) and their signalling in response to neurotrophins is critically dependent upon their ability to transphosphorylate and act as signalling centres for multiple adaptor proteins and distinct, downstream pathways. Such phosphotyrosine signalling also depends upon the appropriate counter-regulation by phosphatases. A large family of receptor-like protein tyrosine phosphatases (RPTPs) are also expressed in developing neurons and in this study we have examined the ability of the phosphatase PTPsigma to interact with and regulate Trk proteins in transfected HEK 293T cells. PTPsigma can bind differentially to Trk proteins, binding stably in complexes with TrkA and TrkC, but not TrkB. The transmembrane domains of PTPsigma and TrkA appear to be sufficient for the direct or indirect interaction between these two receptors. Furthermore, PTPsigma is shown to dephosphorylate all three Trk receptors and suppress their phosphorylation in the presence of neurotrophins. In addition, overexpression of PTPsigma in primary sensory neurons in culture inhibits neurite outgrowth without affecting the short-term survival of these neurons. PTPsigma can thus show differential complex formation with different Trk family members and in neurons can selectively target the neurite-forming signalling pathway driven by TrkA.
Trk家族的神经营养因子受体在发育中神经元的存活及轴突发生过程中起着至关重要的作用。Trk家族是受体蛋白酪氨酸激酶(RTK),它们对神经营养因子的信号传导严重依赖于其转磷酸化的能力,以及作为多种衔接蛋白和不同下游信号通路的信号中心的能力。这种磷酸酪氨酸信号传导还取决于磷酸酶的适当反向调节。一大类受体样蛋白酪氨酸磷酸酶(RPTP)也在发育中的神经元中表达,在本研究中,我们检测了磷酸酶PTPsigma在转染的HEK 293T细胞中与Trk蛋白相互作用并调节Trk蛋白的能力。PTPsigma能与Trk蛋白发生不同的结合,与TrkA和TrkC稳定结合形成复合物,但不与TrkB结合。PTPsigma和TrkA的跨膜结构域似乎足以实现这两种受体之间的直接或间接相互作用。此外,PTPsigma可使所有三种Trk受体去磷酸化,并在存在神经营养因子的情况下抑制它们的磷酸化。另外,在培养的初级感觉神经元中过表达PTPsigma会抑制神经突生长,但不影响这些神经元的短期存活。因此,PTPsigma可与不同的Trk家族成员形成不同的复合物,并且在神经元中可选择性地靶向由TrkA驱动的神经突形成信号通路。