Kawata Masaaki, Sato Chikara
Grid Technology Research Center, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba 305-8568, Japan.
J Electron Microsc (Tokyo). 2007 Jun;56(3):83-92. doi: 10.1093/jmicro/dfm010.
In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.
在单颗粒分析中确定大分子组装体的三维(3D)结构时,从大量原始图像中获取的具有代表性的二维(2D)平均图像数据集是获得高分辨率的关键。由于平均之前的对齐计算量很大,目前可用的多参考对齐(MRA)软件无法对每一种可能的对齐方式进行全面搜索。这会导致图像未对齐,产生模糊的平均值,降低最终三维重建的质量。我们提出了一种新方法,将多参考对齐与分类相结合(多参考多重对齐:MRMA)。该方法能够对多个对齐峰值进行统计比较,反映每个原始图像与一组参考图像之间的相似性。对于每个原始图像,在选定的对齐候选中,根据相似投影的对齐原始图像在图像空间中正确对齐坐标周围具有密集分布这一原则,通过统计方法排除未对齐的图像。使用具有不同信噪比的模型图像集以及瞬时受体电位C3和钠通道的电子显微镜图像,对这种新开发的方法的准确性和速度进行了检验。在每个数据集中,新开发的方法在抗噪声能力和速度方面均优于传统方法,生成了质量更高的二维平均图像。这种统计上协调的对齐 - 分类组合应该会极大地提高单颗粒分析的质量。