Suppr超能文献

使用广义库仑势进行高效表面重建。

Efficient surface reconstruction using generalized coulomb potentials.

作者信息

Jalba Andrei C, Roerdink Jos B T M

机构信息

Institute for Mathematics and Computing science, University of Groningen, The Netherlands.

出版信息

IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1512-9. doi: 10.1109/TVCG.2007.70553.

Abstract

We propose a novel, geometrically adaptive method for surface reconstruction from noisy and sparse point clouds, without orientation information. The method employs a fast convection algorithm to attract the evolving surface towards the data points. The force field in which the surface is convected is based on generalized Coulomb potentials evaluated on an adaptive grid (i.e., an octree) using a fast, hierarchical algorithm. Formulating reconstruction as a convection problem in a velocity field generated by Coulomb potentials offers a number of advantages. Unlike methods which compute the distance from the data set to the implicit surface, which are sensitive to noise due to the very reliance on the distance transform, our method is highly resilient to shot noise since global, generalized Coulomb potentials can be used to disregard the presence of outliers due to noise. Coulomb potentials represent long-range interactions that consider all data points at once, and thus they convey global information which is crucial in the fitting process. Both the spatial and temporal complexities of our spatially-adaptive method are proportional to the size of the reconstructed object, which makes our method compare favorably with respect to previous approaches in terms of speed and flexibility. Experiments with sparse as well as noisy data sets show that the method is capable of delivering crisp and detailed yet smooth surfaces.

摘要

我们提出了一种新颖的、几何自适应方法,用于从无方向信息的噪声稀疏点云进行表面重建。该方法采用快速对流算法,将演化的表面吸引到数据点。表面对流所处的力场基于使用快速分层算法在自适应网格(即八叉树)上评估的广义库仑势。将重建表述为库仑势生成的速度场中的对流问题具有许多优点。与那些计算从数据集到隐式表面的距离的方法不同,由于非常依赖距离变换,那些方法对噪声敏感,而我们的方法对散粒噪声具有高度弹性,因为全局广义库仑势可用于忽略由于噪声导致的离群值的存在。库仑势表示同时考虑所有数据点的长程相互作用,因此它们传达了在拟合过程中至关重要的全局信息。我们的空间自适应方法的空间和时间复杂度都与重建对象的大小成比例,这使得我们的方法在速度和灵活性方面比以前的方法更具优势。对稀疏和噪声数据集的实验表明,该方法能够生成清晰、详细且平滑的表面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验