Suppr超能文献

Time resolved secretion of chloride from a monolayer of mucin-secreting epithelial cells.

作者信息

Nair Sumitha, Kashyap Rohit, Laboisse Christian L, Hopfer Ulrich, Gratzl Miklos

机构信息

Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Eur Biophys J. 2008 Apr;37(4):411-9. doi: 10.1007/s00249-007-0226-3. Epub 2007 Oct 30.

Abstract

Short-circuit current (Isc) measurement is used to quantify transepithelial ion flux. This technique provides a direct measure of net charge transport across a cell monolayer. Isc however, lacks chemical selectivity. Chemically resolved ion fluxes may be much greater than Isc, and differ in different biological processes. This work describes a novel experimental approach and deconvolution method to obtain temporally resolved ion fluxes at epithelial cell monolayers. HT29-Cl.16E cells, a sub clone of the human colonic cancer cell line HT29 was used as a model cell line to validate this approach in the context of epithelial transport studies. This cell line is known to secrete chloride in response to purinergic stimulation. Changes in chloride concentration after stimulation with 1 mM ATP plus 50 nM phorbol-myristate acetate (PMA) are recorded with a chloride ion-selective electrode (ISE) at a short distance (approximately 50 microm) from the monolayer. The recorded concentrations are transformed to corresponding chloride flux across the monolayer using a deconvolution algorithm for extracellular mass transport based on minimization of the shape error function (Nair and Gratzl in Anal Chem 77:2875-2888, 2005). Simultaneous voltage clamp yields the associated net electrical charge flux (Isc). The dynamics of Cl(-) flux did correlate with that of the electrical flux, but was found to be greater in amplitude. This suggests that Cl(-) may not be the only ion secreted. The method of simultaneously assessing ionic and electrical fluxes with a temporal resolution of seconds provides unique information about the dynamics of solute fluxes across the apical membrane.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验