Wang Tianyun, Xue Lexun, Ji Xiang, Li Jie, Wang Yafeng, Feng Yingcai
Laboratory for Cell Biology, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
Mol Biol Rep. 2009 Jan;36(1):207-14. doi: 10.1007/s11033-007-9168-1. Epub 2007 Oct 31.
Previous studies have demonstrated that 14-3-3 proteins exist in all the eukaryotic organisms studied; however, studies on the 14-3-3 proteins have not been involved in the halotolerant, unicellular green alga Dunaliella salina so far. In the present study, a cDNA encoding 14-3-3 protein of D. salina was cloned and sequenced by PCR and rapid amplification of cDNA end (RACE) technique based on homologous sequences of the 14-3-3 proteins found in other organisms. The cloned cDNA of 1485 bp in length had a 29.2 kDa of molecular weight and contained a 774 bp of open reading frame encoding a polypeptide of 258 amino acids. Like the other 14-3-3 proteins, the deduced amino acid sequences of the D. salina 14-3-3 protein also contained two putative phosphorylation sites within the N-terminal region (positions 62 and 67). Furthermore, an EF hand motif characteristic for Ca(2+)-binding sites was located within the C-terminal part of this polypeptide (positions 208-219). Analysis of bioinformatics revealed that the 14-3-3 protein of D. salina shared homology with that of other organisms. Real-time quantitative PCR demonstrated that expression of the 14-3-3 protein gene is cell cycle-dependent.