Alexe-Ionescu A L, Barbero G, Lelidis I, Scalerandi M
Departamentul de Fizica, Universitatea Politehnica din Bucuresti, Splaiul Independentei 333, Ro-060042 Bucharest, Romania.
J Phys Chem B. 2007 Nov 22;111(46):13287-93. doi: 10.1021/jp0742160. Epub 2007 Nov 1.
We evaluate the relaxation times for an electrolytic cell subject to a step-like external voltage, in the case in which the mobility of negative ions is different from that of positive ions. The electrodes of the cell, in the shape of a slab, are supposed to be perfectly blocking. The theoretical analysis is performed by assuming that the applied voltage is so small that the fundamental equations of the problem can be linearized. In this framework, the eigenvalues equations defining all relaxation times of the problem are deduced. In the numerical analysis, we solve the complete set of equations describing the time evolution of the system under the action of the external voltage. Two relaxation processes, connected with the ambipolar and free diffusion phenomena, are sufficient to describe the dynamics of the system, when the diffusion coefficients are of the same order of magnitude.
我们评估了在负离子迁移率与正离子迁移率不同的情况下,受阶跃状外部电压作用的电解池的弛豫时间。该电解池的电极呈平板状,假定为完全阻塞型。理论分析是在假设所施加电压非常小以至于问题的基本方程可以线性化的前提下进行的。在此框架下,推导了定义该问题所有弛豫时间的特征值方程。在数值分析中,我们求解了描述系统在外部电压作用下时间演化的完整方程组。当扩散系数处于相同数量级时,与双极扩散和自由扩散现象相关的两个弛豫过程足以描述系统的动力学。