Brenman Jay E
Neuroscience Center, UNC Chapel HillSchool of Medicine, Chapel Hill, North Carolina 27599 USA.
Cell Cycle. 2007 Nov 15;6(22):2755-9. doi: 10.4161/cc.6.22.4927. Epub 2007 Aug 22.
Cells must coordinate diverse processes including cell division, cell migration, and cell polarity with the cell's metabolic status. How single molecules coordinate these seemingly distinct cell biological events remains relatively unexplored. AMP-activated protein kinase (AMPK) sits at a unique position as a proposed energy sensor that can interface with diverse signaling molecules ranging from LKB1 to mammalian target of rapamycin (mTOR), affecting processes from ribosomal biogenesis to actin regulation. Determining biologically relevant direct kinase targets remains challenging. Alternatively, one can genetically inactivate a kinase and subsequently characterize cellular and whole animal phenotypes without the kinase's activity. Recent genetic studies inactivating AMPK activity in Drosophila indicate unanticipated roles for AMPK as a regulator of epithelial polarity, consistent with known roles of an upstream activator, LKB1 as a PAR (portioning defective) mutant in Caenorhabditis elegans and polarity regulator. Additional genetic analyses demonstrate that both AMPK and LKB1 function are required for faithful chromosomal segregation during mitosis. At least some of these apparently divergent phenotypes may be mediated through myosin regulatory light chain, and presumably the acto-myosin complex, which can affect both polarity and cell division. Chromosomal integrity defects could also be consistent with LKB1's role as a known human tumor suppressor gene. Elucidating the molecular players that interface with AMPK and their potential energy dependent regulation remains an important challenge to fully understand AMPK signaling.
细胞必须将包括细胞分裂、细胞迁移和细胞极性在内的多种过程与细胞的代谢状态相协调。单个分子如何协调这些看似不同的细胞生物学事件仍相对未被探索。AMP激活的蛋白激酶(AMPK)作为一种假定的能量传感器处于独特位置,它可与从LKB1到雷帕霉素哺乳动物靶标(mTOR)等多种信号分子相互作用,影响从核糖体生物发生到肌动蛋白调节等过程。确定生物学上相关的直接激酶靶点仍然具有挑战性。另外,人们可以通过基因手段使一种激酶失活,随后在没有该激酶活性的情况下表征细胞和整体动物的表型。最近在果蝇中使AMPK活性失活的遗传学研究表明,AMPK作为上皮极性调节剂具有意想不到的作用,这与上游激活剂LKB1在秀丽隐杆线虫中作为PAR(分区缺陷)突变体和极性调节剂的已知作用一致。进一步的遗传学分析表明,AMPK和LKB1的功能在有丝分裂期间忠实的染色体分离中都是必需的。这些明显不同的表型中至少有一些可能是通过肌球蛋白调节轻链介导的,大概还有肌动蛋白-肌球蛋白复合物,它们可以影响极性和细胞分裂。染色体完整性缺陷也可能与LKB1作为已知人类肿瘤抑制基因的作用一致。阐明与AMPK相互作用的分子参与者及其潜在的能量依赖性调节仍然是全面理解AMPK信号传导的一项重要挑战。