Raval Ami P, Dave Kunjan R, DeFazio R Anthony, Perez-Pinzon Miguel A
Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program, University of Miami Leonard M Miller School of Medicine, Miami, FL 33101, USA.
Brain Res. 2007 Dec 12;1184:345-53. doi: 10.1016/j.brainres.2007.09.073. Epub 2007 Oct 5.
Neuroprotection against cerebral ischemia conferred by ischemic preconditioning (IPC) requires translocation of epsilon protein kinase C (epsilonPKC). A major goal in our laboratory is to define the cellular targets by which epsilonPKC confers protection. We tested the hypothesis that epsilonPKC targets the mitochondrial K(+)(ATP) channel (mtK(+)(ATP)) after IPC. Our results demonstrated a rapid translocation of epsilonPKC to rat hippocampal mitochondria after IPC. Because in other tissues epsilonPKC targets mtK(+)(ATP) channels, but its presence in brain mitochondria is controversial, we determined the presence of the K(+)(ATP) channel-specific subunits (Kir6.1 and Kir6.2) in mitochondria isolated from rat hippocampus. Next, we determined whether mtK(+)(ATP) channels play a role in the IPC induction. In hippocampal organotypic slice cultures, IPC and lethal ischemia were induced by oxygen-glucose deprivation. Subsequent cell death in the CA1 region was quantified using propidium iodide staining. Treatment with the K(+)(ATP) channel openers diazoxide or pinacidil 48 h prior to lethal ischemia protected hippocampal CA1 neurons, mimicking the induction of neuroprotection conferred by either IPC or epsilonPKC agonist-induced preconditioning. Blockade of mtK(+)(ATP) channels using 5-hydroxydecanoic acid abolished the neuroprotection due to either IPC or epsilonPKC preconditioning. Both ischemic and epsilonPKC agonist-mediated preconditioning resulted in phosphorylation of the mtK(+)(ATP) channel subunit Kir6.2. After IPC, selective inhibition of epsilonPKC activation prevented Kir6.2 phosphorylation, consistent with Kir6.2 as a phosphorylation target of epsilonPKC or its downstream effectors. Our results support the hypothesis that the brain mtK(+)(ATP) channel is an important target of IPC and the signal transduction pathways initiated by epsilonPKC.
缺血预处理(IPC)赋予的针对脑缺血的神经保护作用需要ε蛋白激酶C(εPKC)的转位。我们实验室的一个主要目标是确定εPKC发挥保护作用的细胞靶点。我们测试了这样一个假说,即IPC后εPKC靶向线粒体K⁺(ATP)通道(mtK⁺(ATP))。我们的结果表明,IPC后εPKC迅速转位至大鼠海马线粒体。因为在其他组织中εPKC靶向mtK⁺(ATP)通道,但其在脑线粒体中的存在存在争议,所以我们确定了从大鼠海马分离的线粒体中K⁺(ATP)通道特异性亚基(Kir6.1和Kir6.2)的存在。接下来,我们确定mtK⁺(ATP)通道是否在IPC诱导中起作用。在海马器官型脑片培养物中,通过氧葡萄糖剥夺诱导IPC和致死性缺血。使用碘化丙啶染色对CA1区随后的细胞死亡进行定量。在致死性缺血前48小时用K⁺(ATP)通道开放剂二氮嗪或匹那地尔处理可保护海马CA1神经元,模拟IPC或εPKC激动剂诱导的预处理所赋予的神经保护作用的诱导。用5-羟基癸酸阻断mtK⁺(ATP)通道消除了由于IPC或εPKC预处理所致的神经保护作用。缺血和εPKC激动剂介导的预处理均导致mtK⁺(ATP)通道亚基Kir6.2的磷酸化。IPC后,选择性抑制εPKC激活可阻止Kir6.2磷酸化,这与Kir6.2作为εPKC或其下游效应器的磷酸化靶点一致。我们的结果支持这样的假说,即脑mtK⁺(ATP)通道是IPC以及由εPKC启动的信号转导通路的一个重要靶点。