Suppr超能文献

基于隐马尔可夫模型的加权似然判别用于二维形状分类。

Hidden Markov model-based weighted likelihood discriminant for 2-D shape classification.

作者信息

Thakoor Ninad, Gao Jean, Jung Sungyong

机构信息

Electrical Engineering Department, University of Texas at Arlington, Arlington, TX 76010, USA.

出版信息

IEEE Trans Image Process. 2007 Nov;16(11):2707-19. doi: 10.1109/tip.2007.908076.

Abstract

The goal of this paper is to present a weighted likelihood discriminant for minimum error shape classification. Different from traditional maximum likelihood (ML) methods, in which classification is based on probabilities from independent individual class models as is the case for general hidden Markov model (HMM) methods, proposed method utilizes information from all classes to minimize classification error. The proposed approach uses a HMM for shape curvature as its 2-D shape descriptor. We introduce a weighted likelihood discriminant function and present a minimum classification error strategy based on generalized probabilistic descent method. We show comparative results obtained with our approach and classic ML classification with various HMM topologies alongside Fourier descriptor and Zernike moments-based support vector machine classification for a variety of shapes.

摘要

本文的目标是提出一种用于最小误差形状分类的加权似然判别方法。与传统的最大似然(ML)方法不同,传统方法中分类基于来自独立个体类模型的概率,如一般隐马尔可夫模型(HMM)方法那样,而本文提出的方法利用所有类别的信息来最小化分类误差。所提出的方法使用形状曲率的隐马尔可夫模型作为其二维形状描述符。我们引入了一个加权似然判别函数,并基于广义概率下降法提出了一种最小分类误差策略。我们展示了使用我们的方法以及具有各种HMM拓扑结构的经典ML分类与傅里叶描述符和基于泽尼克矩的支持向量机分类对各种形状所获得的比较结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验