Li Peng, Wang Dajun, Lucas Jason, Oparil Suzanne, Xing Dongqi, Cao Xu, Novak Lea, Renfrow Matthew B, Chen Yiu-Fai
Vascular Biology and Hypertension Program, Department of Medicine, University of Alabama at Birmingham, AL 35294, USA.
Circ Res. 2008 Feb 1;102(2):185-92. doi: 10.1161/CIRCRESAHA.107.157677. Epub 2007 Nov 8.
This study tested the hypothesis that activation of atrial natriuretic peptide (ANP)/cGMP/protein kinase G signaling inhibits transforming growth factor (TGF)-beta1-induced extracellular matrix expression in cardiac fibroblasts and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Left ventricular hypertrophy and fibrosis, collagen deposition, and myofibroblast transformation of cardiac fibroblasts in response to pressure overload by transverse aortic constriction were exaggerated in ANP-null mice compared with wild-type controls. ANP and cGMP inhibited TGF-beta1-induced myofibroblast transformation, proliferation, collagen synthesis, and plasminogen activator inhibitor-1 expression in cardiac fibroblasts isolated from wild-type mice. Following pretreatment with cGMP, TGF-beta1 induced phosphorylation of Smad3, but the resultant pSmad3 could not be translocated to the nucleus. pSmad3 that had been phosphorylated with recombinant protein kinase G-1alpha was analyzed by use of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ion trap tandem mass spectrometry. The analysis revealed phosphorylation of Ser309 and Thr388 residues, sites distinct from the C-terminal Ser423/425 residues that are phosphorylated by TGF-beta receptor kinase and are critical for the nuclear translocation and down-stream signaling of pSmad3. These results suggest that phosphorylation of Smad3 by protein kinase G is a potential molecular mechanism by which activation of ANP/cGMP/protein kinase G signaling disrupts TGF-beta1-induced nuclear translocation of pSmad3 and downstream events, including myofibroblast transformation, proliferation, and expression of extracellular matrix molecules in cardiac fibroblasts. We postulate that this process contributes to the antifibrogenic effects of the natriuretic peptide in heart.
心房利钠肽(ANP)/环磷酸鸟苷(cGMP)/蛋白激酶G信号通路的激活可抑制转化生长因子(TGF)-β1诱导的心脏成纤维细胞外基质表达,并确定了这一信号通路分子融合发生的特定位点。与野生型对照相比,在主动脉缩窄造成压力超负荷时,ANP基因敲除小鼠的左心室肥厚和纤维化、胶原沉积以及心脏成纤维细胞向肌成纤维细胞的转化更为严重。ANP和cGMP可抑制从野生型小鼠分离的心脏成纤维细胞中TGF-β1诱导的肌成纤维细胞转化、增殖、胶原合成以及纤溶酶原激活物抑制剂-1表达。用cGMP预处理后,TGF-β1可诱导Smad3磷酸化,但产生的磷酸化Smad3(pSmad3)无法转运至细胞核。利用傅里叶变换离子回旋共振质谱(FT-ICR MS)和离子阱串联质谱对用重组蛋白激酶G-1α磷酸化的pSmad3进行分析。分析显示Ser309和Thr388残基发生了磷酸化,这些位点不同于由TGF-β受体激酶磷酸化的C末端Ser423/425残基,而后者对pSmad3的核转运和下游信号传导至关重要。这些结果表明,蛋白激酶G介导的Smad3磷酸化是一种潜在的分子机制,通过该机制,ANP/cGMP/蛋白激酶G信号通路的激活可破坏TGF-β1诱导的pSmad3核转运及下游事件,包括心脏成纤维细胞中的肌成纤维细胞转化、增殖和细胞外基质分子表达。我们推测,这一过程有助于利钠肽在心脏中的抗纤维化作用。