Suppr超能文献

人类因果学习中的认知偏差。

Cognitive biases in human causal learning.

作者信息

Maldonado Antonio, Catena Andrés, Perales José César, Cándido Antonio

机构信息

Departamento de Psicología Experimental, Facultad de Psicologia, Universidad de Granada, Campus de la Cartuja, Granada-18014, Spain.

出版信息

Span J Psychol. 2007 Nov;10(2):242-50. doi: 10.1017/s1138741600006508.

Abstract

The main aim of this work was to look for cognitive biases in human inference of causal relationships in order to emphasize the psychological processes that modulate causal learning. From the effect of the judgment frequency, this work presents subsequent research on cue competition (overshadowing, blocking, and super-conditioning effects) showing that the strength of prior beliefs and new evidence based upon covariation computation contributes additively to predict causal judgments, whereas the balance between the reliability of both, beliefs and covariation knowledge, modulates their relative weight. New findings also showed "inattentional blindness" for negative or preventative causal relationships but not for positive or generative ones, due to failure in codifying and retrieving the necessary information for its computation. Overall results unveil the need of three hierarchical levels of a whole architecture for human causal learning: the lower one, responsible for codifying the events during the task; the second one, computing the retrieved information; finally, the higher level, integrating this evidence with previous causal knowledge. In summary, whereas current theoretical frameworks on causal inference and decision-making usually focused either on causal beliefs or covariation information, the present work shows how both are required to be able to explain the complexity and flexibility involved in human causal learning.

摘要

这项工作的主要目的是在人类对因果关系的推理中寻找认知偏差,以强调调节因果学习的心理过程。从判断频率的影响出发,这项工作展示了后续关于线索竞争(遮蔽、阻断和超条件作用效应)的研究,表明基于共变计算的先验信念和新证据的强度对预测因果判断具有累加作用,而信念和共变知识两者可靠性之间的平衡则调节它们的相对权重。新的研究结果还表明,由于未能编码和检索计算所需的必要信息,人们对负面或预防性因果关系存在“无意视盲”,但对正面或生成性因果关系则不存在。总体结果揭示了人类因果学习的整个架构需要三个层次:较低层次负责在任务期间对事件进行编码;第二个层次计算检索到的信息;最后,较高层次将这些证据与先前的因果知识整合起来。总之,当前关于因果推理和决策的理论框架通常要么侧重于因果信念,要么侧重于共变信息,而本研究表明两者都需要,才能解释人类因果学习中所涉及的复杂性和灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验