Suppr超能文献

Distinguishing abiotic and biotic transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope fractionation.

作者信息

Liang Xiaoming, Dong Yiran, Kuder Tomasz, Krumholz Lee R, Philp R Paul, Butler Elizabeth C

机构信息

School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma 73019, USA.

出版信息

Environ Sci Technol. 2007 Oct 15;41(20):7094-100. doi: 10.1021/es070970n.

Abstract

Significant carbon isotope fractionation was observed during FeS-mediated reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE). Bulk enrichment factors (E(bulk)) for PCE were -30.2 +/- 4.3 per thousand (pH 7), -29.54 +/- 0.83 per thousand (pH 8), and -24.6 +/- 1.1 per thousand (pH 9). For TCE, E(bulk) values were -33.4 +/- 1.5 per thousand (pH 8) and -27.9 +/- 1.3 per thousand (pH 9). A smaller magnitude of carbon isotope fractionation resulted from microbial reductive dechlorination by two isolated pure cultures (Desulfuromonas michiganensis strain BB1 (BB1) and Sulfurospirillum multivorans (Sm)) and a bacterial consortium (BioDechlor INOCULUM (BDI)). The E(bulk) values for biological PCE microbial dechlorination were -1.39 +/- 0.21 per thousand (BB1), -1.33 +/- 0.13 per thousand (Sm), and -7.12 +/- 0.72 per thousand (BDI), while those for TCE were -4.07 +/- 0.48 per thousand (BB1), -12.8 +/- 1.6 per thousand (Sm), and -15.27 +/- 0.79 per thousand (BDI). Reactions were investigated by calculation of the apparent kinetic isotope effect for carbon (AKIEc), and the results suggest that differences in isotope fractionation for abiotic and microbial dechlorination resulted from the differences in rate-limiting steps during the dechlorination reaction. Measurement of more negative E(bulk) values at sites contaminated with PCE and TCE may suggest the occurrence of abiotic reductive dechlorination by FeS.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验