Suppr超能文献

心室颤动的影像学表现。

Imaging ventricular fibrillation.

作者信息

Salama Guy, Choi Bum-Rak

机构信息

Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S56-61. doi: 10.1016/j.jelectrocard.2007.06.021.

Abstract

Ventricular fibrillation (VF) had been traditionally considered as a highly disorganized process of random electrical activity emanating from multiple, short-lived, reentrant electrical waves. It is the incessant breakup of wave fronts and the creation of new daughter waves (wavebreaks) that perpetuate VF. Other studies described VF as a process with a substantial degree of structure embedded in seemingly random events where VF is spatially organized as a small number of relatively large domains, each with a single dominant frequency. Ventricular fibrillation is then driven by the domain with the highest activation frequency representing a "mother rotor" that drives the surrounding myocardium except at boundaries with more refractory tissues. Voltage-sensitive dyes and optical mapping provide a powerful technique that has been extensively applied to study the structure and organization of VF and has revealed how cellular properties, fiber orientation, and metabolism influence VF. This brief review will discuss signal processing methods used to investigate mechanisms underlying VF, namely, (a) fast Fourier transform, (b) time-frequency domain analysis, (c) time-lag correlation, (d) mutual information analysis, and (e) phase reconstruction techniques to identify phase singularities and wavebreak locations. In addition, several cellular properties that have been shown to influence the structure of VF such as (a) the dispersion of repolarization, (b) the low tonicity/osmolarity, and (c) the amplitude of K(+) currents will be discussed as determinants of VF. Finally, recent image analysis routines were used to identify wavebreak sites and revealed that wavebreaks are caused by abrupt spatial dispersion of voltage (V(m)) oscillations.

摘要

传统上,心室颤动(VF)被认为是一种高度紊乱的过程,由多个短暂的折返电波产生随机电活动。正是波前的不断破裂和新子波(波裂)的产生使心室颤动持续存在。其他研究将心室颤动描述为一个在看似随机的事件中嵌入了大量结构的过程,在这个过程中,心室颤动在空间上被组织成少数相对较大的区域,每个区域都有一个单一的主导频率。然后,心室颤动由具有最高激活频率的区域驱动,该区域代表一个“母转子”,它驱动周围的心肌,但在与更具不应期的组织的边界处除外。电压敏感染料和光学标测提供了一种强大的技术,已被广泛应用于研究心室颤动的结构和组织,并揭示了细胞特性、纤维方向和代谢如何影响心室颤动。这篇简短的综述将讨论用于研究心室颤动潜在机制的信号处理方法,即:(a)快速傅里叶变换,(b)时频域分析,(c)时间滞后相关性,(d)互信息分析,以及(e)用于识别相位奇点和波裂位置的相位重建技术。此外,还将讨论一些已被证明会影响心室颤动结构的细胞特性,如(a)复极离散度,(b)低张性/渗透压,以及(c)钾离子电流幅度,作为心室颤动的决定因素。最后,最近的图像分析程序被用于识别波裂部位,并揭示波裂是由电压(V(m))振荡的突然空间离散引起的。

相似文献

1
Imaging ventricular fibrillation.
J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S56-61. doi: 10.1016/j.jelectrocard.2007.06.021.
2
Spatially discordant voltage alternans cause wavebreaks in ventricular fibrillation.
Heart Rhythm. 2007 Aug;4(8):1057-68. doi: 10.1016/j.hrthm.2007.03.037. Epub 2007 Jun 12.
3
Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans.
Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H875-80. doi: 10.1152/ajpheart.01415.2006. Epub 2007 Mar 16.
4
Spatiotemporal correlation between phase singularities and wavebreaks during ventricular fibrillation.
J Cardiovasc Electrophysiol. 2003 Oct;14(10):1103-9. doi: 10.1046/j.1540-8167.2003.03218.x.
5
Fiber orientation and cell-cell coupling influence ventricular fibrillation dynamics.
J Cardiovasc Electrophysiol. 2003 Aug;14(8):851-60. doi: 10.1046/j.1540-8167.2003.02522.x.
7
Evidence for multiple mechanisms in human ventricular fibrillation.
Circulation. 2006 Aug 8;114(6):536-42. doi: 10.1161/CIRCULATIONAHA.105.602870. Epub 2006 Jul 31.
8
Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation.
IEEE Trans Biomed Eng. 2004 Jan;51(1):56-65. doi: 10.1109/TBME.2003.820341.
9
Lifetimes of epicardial rotors in panoramic optical maps of fibrillating swine ventricles.
Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1935-41. doi: 10.1152/ajpheart.00276.2006. Epub 2006 Apr 21.
10
Ventricular fibrillation in myopathic human hearts: mechanistic insights from in vivo global endocardial and epicardial mapping.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2589-97. doi: 10.1152/ajpheart.01336.2006. Epub 2007 Jan 26.

引用本文的文献

2
In-silico study of the cardiac arrhythmogenic potential of biomaterial injection therapy.
Sci Rep. 2020 Jul 31;10(1):12990. doi: 10.1038/s41598-020-69900-4.
4
Extracting surface activation time from the optically recorded action potential in three-dimensional myocardium.
Biophys J. 2012 Jan 4;102(1):30-8. doi: 10.1016/j.bpj.2011.10.036. Epub 2012 Jan 3.
5
Flow detection of propagating waves with temporospatial correlation of activity.
J Neurosci Methods. 2011 Sep 15;200(2):207-18. doi: 10.1016/j.jneumeth.2011.05.023. Epub 2011 Jun 2.
6
Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.
J Cardiovasc Transl Res. 2008 Sep;1(3):207-16. doi: 10.1007/s12265-008-9045-x. Epub 2008 Jul 16.
7
Simultaneous optical mapping of intracellular free calcium and action potentials from Langendorff perfused hearts.
Curr Protoc Cytom. 2009 Jul;Chapter 12:Unit 12.17. doi: 10.1002/0471142956.cy1217s49.
8
Normalization of voltage-sensitive dye signal with functional activity measures.
PLoS One. 2008;3(12):e4041. doi: 10.1371/journal.pone.0004041. Epub 2008 Dec 24.

本文引用的文献

1
Spatially discordant voltage alternans cause wavebreaks in ventricular fibrillation.
Heart Rhythm. 2007 Aug;4(8):1057-68. doi: 10.1016/j.hrthm.2007.03.037. Epub 2007 Jun 12.
2
Low osmolarity transforms ventricular fibrillation from complex to highly organized, with a dominant high-frequency source.
Heart Rhythm. 2006 Oct;3(10):1210-20. doi: 10.1016/j.hrthm.2006.06.026. Epub 2006 Jul 8.
3
Intracellular Ca dynamics in ventricular fibrillation.
Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1836-44. doi: 10.1152/ajpheart.00123.2003. Epub 2004 Jan 2.
4
A tale of two fibrillations.
Circulation. 2003 Nov 11;108(19):2298-303. doi: 10.1161/01.CIR.0000094404.26004.07.
5
Fiber orientation and cell-cell coupling influence ventricular fibrillation dynamics.
J Cardiovasc Electrophysiol. 2003 Aug;14(8):851-60. doi: 10.1046/j.1540-8167.2003.02522.x.
6
Life span of ventricular fibrillation frequencies.
Circ Res. 2002 Aug 23;91(4):339-45. doi: 10.1161/01.res.0000031801.84308.f4.
7
Frequency analysis of ventricular fibrillation in Swine ventricles.
Circ Res. 2002 Feb 8;90(2):213-22. doi: 10.1161/hh0202.103645.
10
The distribution of refractory periods influences the dynamics of ventricular fibrillation.
Circ Res. 2001 Mar 16;88(5):E49-58. doi: 10.1161/01.res.88.5.e49.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验