Suppr超能文献

一种基于自适应3D德劳内细分策略的针对大型二值图像数据集的并行化表面提取算法。

A parallelized surface extraction algorithm for large binary image data sets based on an adaptive 3D delaunay subdivision strategy.

作者信息

Ma Yingliang, Saetzler Kurt

机构信息

Division of Imaging Sciences, King's College London, Guy's Hospital, London, UK.

出版信息

IEEE Trans Vis Comput Graph. 2008 Jan-Feb;14(1):160-72. doi: 10.1109/TVCG.2007.1057.

Abstract

In this paper we describe a novel 3D subdivision strategy to extract the surface of binary image data. This iterative approach generates a series of surface meshes that capture different levels of detail of the underlying structure. At the highest level of detail, the resulting surface mesh generated by our approach uses only about 10% of the triangles in comparison to the marching cube algorithm (MC) even in settings were almost no image noise is present. Our approach also eliminates the so-called "staircase effect" which voxel based algorithms like the MC are likely to show, particularly if non-uniformly sampled images are processed. Finally, we show how the presented algorithm can be parallelized by subdividing 3D image space into rectilinear blocks of subimages. As the algorithm scales very well with an increasing number of processors in a multi-threaded setting, this approach is suited to process large image data sets of several gigabytes. Although the presented work is still computationally more expensive than simple voxel-based algorithms, it produces fewer surface triangles while capturing the same level of detail, is more robust towards image noise and eliminates the above-mentioned "staircase" effect in anisotropic settings. These properties make it particularly useful for biomedical applications, where these conditions are often encountered.

摘要

在本文中,我们描述了一种新颖的三维细分策略,用于提取二值图像数据的表面。这种迭代方法生成了一系列表面网格,这些网格捕捉了底层结构不同层次的细节。在最高细节级别,与行进立方体算法(MC)相比,我们的方法生成的最终表面网格使用的三角形数量仅约为其10%,即使在几乎不存在图像噪声的情况下也是如此。我们的方法还消除了基于体素的算法(如MC)可能出现的所谓“阶梯效应”,特别是在处理非均匀采样图像时。最后,我们展示了如何通过将三维图像空间细分为子图像的直线块来对所提出的算法进行并行化。由于该算法在多线程设置中随着处理器数量的增加扩展得非常好,这种方法适合处理数GB的大型图像数据集。虽然所提出的工作在计算上仍然比简单的基于体素的算法更昂贵,但它在捕捉相同细节水平的同时产生的表面三角形更少,对图像噪声更鲁棒,并在各向异性设置中消除了上述“阶梯”效应。这些特性使其在经常遇到这些情况的生物医学应用中特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验