Wu Qing, Xia Tian, Chen Chun, Lin Hsueh-Yi Sean, Wang Hongcheng, Yu Yizhou
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
IEEE Trans Vis Comput Graph. 2008 Jan-Feb;14(1):186-99. doi: 10.1109/TVCG.2007.70406.
Visual data comprise of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop a compact data representation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional dataset is transformed into a hierarchy of signals to expose its multi-scale structures. The signal at each level of the hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are further transformed and pruned using a tensor approximation technique. Our hierarchical tensor approximation supports progressive transmission and partial decompression. Experimental results indicate that our technique can achieve higher compression ratios and quality than previous methods, including wavelet transforms, wavelet packet transforms, and single-level tensor approximation. We have successfully applied our technique to multiple tasks involving multi-dimensional visual data, including medical and scientific data visualization, data-driven rendering and texture synthesis.
视觉数据由多尺度和不均匀信号组成。在本文中,我们利用这些特性,开发了一种基于分层张量变换的紧凑数据表示技术。在该技术中,一个原始的多维数据集被转换为一个信号层次结构,以揭示其多尺度结构。层次结构中每个级别的信号进一步被划分为多个较小的张量,以揭示其空间不均匀结构。这些较小的张量使用张量近似技术进一步变换和修剪。我们的分层张量近似支持渐进传输和部分解压缩。实验结果表明,我们的技术比以前的方法,包括小波变换、小波包变换和单级张量近似,能够实现更高的压缩率和质量。我们已经成功地将我们的技术应用于多个涉及多维视觉数据的任务,包括医学和科学数据可视化、数据驱动渲染和纹理合成。