Suppr超能文献

相互连接球体无序堆积的理论弹性模量。

Theoretical elastic moduli for disordered packings of interconnected spheres.

作者信息

Zaccone Alessio, Lattuada Marco, Wu Hua, Morbidelli Massimo

机构信息

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

出版信息

J Chem Phys. 2007 Nov 7;127(17):174512. doi: 10.1063/1.2792995.

Abstract

A theoretical model has been developed which provides analytical expressions for the elastic moduli of disordered isotropic ensembles of spheres interconnected by physical bonds. Young's and shear moduli have been derived assuming an ideal random isotropic network and the radial distribution function for disordered packings of spheres. The interparticle interactions are accounted for in terms of surface forces for the two distinct cases of perfectly rigid spheres and spheres deformable at contact. A theoretical expression is also derived in a similar way for the bulk or compressibility modulus. In this case, an atomistic approach has been followed based on the analogy with noble gas solids and colloidal crystals. Also in this case, disordered spatial distribution of the spheres is described statistically. For the case of colloidal aggregates, a total two-body mean-field interaction potential is used which includes the Born repulsion energy. This latter contribution plays an essential role in determining the compression behavior of systems of particles aggregated in the primary minimum of the potential well and, therefore, must not be neglected. Both the expression of the Young's modulus and that of the compressibility modulus derived in this work are found to be consistent with two distinct sets of experimental data which recently appeared in the literature.

摘要

已经建立了一个理论模型,该模型为通过物理键相互连接的无序各向同性球体集合的弹性模量提供了解析表达式。在假设理想随机各向同性网络和球体无序堆积的径向分布函数的情况下,推导出了杨氏模量和剪切模量。对于完全刚性球体和接触时可变形球体这两种不同情况,粒子间相互作用是根据表面力来考虑的。以类似的方式也推导出了体积模量或压缩模量的理论表达式。在这种情况下,基于与惰性气体固体和胶体晶体的类比采用了原子论方法。同样在这种情况下,球体的无序空间分布是通过统计描述的。对于胶体聚集体的情况,使用了一个总的两体平均场相互作用势,其中包括玻恩排斥能。后一种贡献在确定聚集在势阱主极小值处的粒子系统的压缩行为中起着至关重要的作用,因此不能被忽略。发现这项工作中推导的杨氏模量表达式和压缩模量表达式都与最近文献中出现的两组不同的实验数据一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验