Janssen Hans-Karl, Lübeck Sven, Stenull Olaf
Institut für Theoretische Physik III, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041126. doi: 10.1103/PhysRevE.76.041126. Epub 2007 Oct 22.
Recently, considerable progress has been made in understanding finite-size scaling in equilibrium systems. Here, we study finite-size scaling in nonequilibrium systems at the instance of directed percolation (DP), which has become the paradigm of nonequilibrium phase transitions into absorbing states, above, at, and below the upper critical dimension. We investigate the finite-size scaling behavior of DP analytically and numerically by considering its steady state generated by a homogeneous constant external source on a d-dimensional hypercube of finite edge length L with periodic boundary conditions near the bulk critical point. In particular, we study the order parameter and its higher moments using renormalized field theory. We derive finite-size scaling forms of the moments in a one-loop calculation. Moreover, we introduce and calculate a ratio of the order parameter moments that plays a similar role in the analysis of finite size scaling in absorbing nonequilibrium processes as the famous Binder cumulant in equilibrium systems and that, in particular, provides a signature of the DP universality class. To complement our analytical work, we perform Monte Carlo simulations which confirm our analytical results.
最近,在理解平衡系统中的有限尺寸标度方面取得了相当大的进展。在此,我们研究非平衡系统在有向渗流(DP)情况下的有限尺寸标度,有向渗流已成为高于、处于和低于上临界维度时向吸收态的非平衡相变的范例。我们通过考虑在具有周期性边界条件的有限边长(L)的(d)维超立方体格点上由均匀恒定外部源产生的稳态,对DP的有限尺寸标度行为进行解析和数值研究,该格点靠近体临界点。特别地,我们使用重整化场论研究序参量及其高阶矩。我们在单圈计算中推导了矩的有限尺寸标度形式。此外,我们引入并计算了序参量矩的一个比率,它在吸收性非平衡过程的有限尺寸标度分析中起到了与平衡系统中著名的Binder累积量类似的作用,并且特别地,它提供了DP普适类的一个特征。为补充我们的解析工作,我们进行了蒙特卡罗模拟,其证实了我们的解析结果。