文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

跨越12个果蝇基因组的基因家族进化。

Gene family evolution across 12 Drosophila genomes.

作者信息

Hahn Matthew W, Han Mira V, Han Sang-Gook

机构信息

Department of Biology, Indiana University, Bloomington, Indiana, United States of America.

出版信息

PLoS Genet. 2007 Nov;3(11):e197. doi: 10.1371/journal.pgen.0030197.


DOI:10.1371/journal.pgen.0030197
PMID:17997610
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2065885/
Abstract

Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and loss of genes at unprecedented resolution. We find large numbers of both gains and losses, with over 40% of all gene families differing in size among the Drosophila. Approximately 17 genes are estimated to be duplicated and fixed in a genome every million years, a rate on par with that previously found in both yeast and mammals. We find many instances of extreme expansions or contractions in the size of gene families, including the expansion of several sex- and spermatogenesis-related families in D. melanogaster that also evolve under positive selection at the nucleotide level. Newly evolved gene families in our dataset are associated with a class of testes-expressed genes known to have evolved de novo in a number of cases. Gene family comparisons also allow us to identify a number of annotated D. melanogaster genes that are unlikely to encode functional proteins, as well as to identify dozens of previously unannotated D. melanogaster genes with conserved homologs in the other Drosophila. Taken together, our results demonstrate that the apparent stasis in total gene number among species has masked rapid turnover in individual gene gain and loss. It is likely that this genomic revolving door has played a large role in shaping the morphological, physiological, and metabolic differences among species.

摘要

全基因组比较揭示了基因家族大小存在大量且频繁的变化。这些变化的发生是由于基因获得(通过复制)和丢失(通过缺失或假基因化)的高发生率,以及全新基因的进化。在这里,我们使用12种全基因组测序的果蝇物种的基因组,以前所未有的分辨率研究基因的获得和丢失。我们发现基因的获得和丢失数量都很多,所有基因家族中超过40%在果蝇之间大小不同。估计每百万年有大约17个基因在一个基因组中被复制并固定下来,这一速率与之前在酵母和哺乳动物中发现的速率相当。我们发现了许多基因家族大小极端扩张或收缩的例子,包括黑腹果蝇中几个与性别和精子发生相关的家族的扩张,这些家族在核苷酸水平上也受到正选择的影响。我们数据集中新进化的基因家族与一类已知在许多情况下从头进化而来的睾丸表达基因相关。基因家族比较还使我们能够识别一些注释的黑腹果蝇基因,这些基因不太可能编码功能性蛋白质,同时还能识别数十个在其他果蝇中具有保守同源物但以前未注释的黑腹果蝇基因。综上所述,我们的结果表明,物种间总基因数的明显停滞掩盖了单个基因获得和丢失的快速更替。这种基因组的旋转门很可能在塑造物种间的形态、生理和代谢差异方面发挥了重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6d/2098792/0777b9b6c212/pgen.0030197.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6d/2098792/6e2c03c5116f/pgen.0030197.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6d/2098792/725214d6ba73/pgen.0030197.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6d/2098792/0777b9b6c212/pgen.0030197.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6d/2098792/6e2c03c5116f/pgen.0030197.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6d/2098792/725214d6ba73/pgen.0030197.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6d/2098792/0777b9b6c212/pgen.0030197.g003.jpg

相似文献

[1]
Gene family evolution across 12 Drosophila genomes.

PLoS Genet. 2007-11

[2]
Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily.

Genetics. 2007-11

[3]
Evolution of hydra, a recently evolved testis-expressed gene with nine alternative first exons in Drosophila melanogaster.

PLoS Genet. 2007-7

[4]
Molecular evolution of Drosophila cuticular protein genes.

PLoS One. 2009-12-17

[5]
Evolution of genes and genomes on the Drosophila phylogeny.

Nature. 2007-11-8

[6]
Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family.

PLoS Genet. 2012-6-21

[7]
Molecular characterization and evolution of the repeating units of histone genes in Drosophila americana: coexistence of quartet and quintet units in a genome.

Insect Mol Biol. 2005-12

[8]
Ab Initio Construction and Evolutionary Analysis of Protein-Coding Gene Families with Partially Homologous Relationships: Closely Related Drosophila Genomes as a Case Study.

Genome Biol Evol. 2020-3-1

[9]
Birth-and-death evolution of the Cecropin multigene family in Drosophila.

J Mol Evol. 2005-1

[10]
Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution.

Genome Biol. 2007

引用本文的文献

[1]
Patterns of Gene Family Evolution and Selection Across .

Ecol Evol. 2025-5-24

[2]
Maximum lifespan and brain size in mammals are associated with gene family size expansion related to immune system functions.

Sci Rep. 2025-4-29

[3]
Developing a genome-wide long sequence-specific tag for sex identification in spotted knifejaw (Oplegnathus punctatus).

Mol Genet Genomics. 2025-3-19

[4]
cold shock proteins suppress bacterial effector translocation in .

Front Microbiol. 2025-1-23

[5]
The nuclear and mitochondrial genome assemblies of Tetragonisca angustula (Apidae: Meliponini), a tiny yet remarkable pollinator in the Neotropics.

BMC Genomics. 2024-6-11

[6]
Genome assembly of Melilotus officinalis provides a new reference genome for functional genomics.

BMC Genom Data. 2024-4-18

[7]
Macroevolutionary dynamics of gene family gain and loss along multicellular eukaryotic lineages.

Nat Commun. 2024-3-26

[8]
DrosOMA: the Orthologous Matrix browser.

F1000Res. 2024-1-16

[9]
Higher evolutionary dynamics of gene copy number for Drosophila glue genes located near short repeat sequences.

BMC Ecol Evol. 2024-2-2

[10]
Phylogenomics of the Ecdysteroid Kinase-like (EcKL) Gene Family in Insects Highlights Roles in Both Steroid Hormone Metabolism and Detoxification.

Genome Biol Evol. 2024-2-1

本文引用的文献

[1]
Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily.

Genetics. 2007-11

[2]
Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures.

Nature. 2007-11-8

[3]
Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans.

PLoS Biol. 2007-11-6

[4]
Accelerated rate of gene gain and loss in primates.

Genetics. 2007-11

[5]
Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution.

Genome Biol. 2007

[6]
Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila.

Genome Biol. 2007

[7]
The evolution of mammalian gene families.

PLoS One. 2006-12-20

[8]
Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting.

PLoS Genet. 2006-10-27

[9]
Horizontal gene transfer in plants.

J Exp Bot. 2007

[10]
Gene transposition as a cause of hybrid sterility in Drosophila.

Science. 2006-9-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索