Hewitson Kirsty S, Schofield Christopher J, Ratcliffe Peter J
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom.
Methods Enzymol. 2007;435:25-42. doi: 10.1016/S0076-6879(07)35002-7.
The adaptation of animals to oxygen availability is mediated by a transcription factor termed hypoxia-inducible factor (HIF). HIF is an alpha (alpha)/beta (beta) heterodimer that binds hypoxia response elements (HREs) of target genes, including some of medicinal importance, such as erythropoietin (EPO) and vascular endothelial growth factor (VEGF). While the concentration of the HIF-beta subunit, a constitutive nuclear protein, does not vary with oxygen availability, the abundance and activity of the HIF-alpha subunits are tightly regulated via oxygen-dependent modification of specific residues. Hydroxylation of prolyl residues (Pro402 and Pro564 in HIF-1alpha) promotes interaction with the von Hippel-Lindau E3 ubiquitin ligase and, consequently, proteolytic destruction by the ubiquitin-proteasome pathway. This prolyl hydroxylation is catalyzed by the prolyl-hydroxylase domain (PHD) containing enzymes for which three isozymes have been identified in humans (1-3). Additionally, asparaginyl hydroxylation (Asn803 in HIF-1alpha) by factor-inhibiting HIF (FIH) ablates interaction of the HIF-alpha subunit with the coactivator p300, providing an alternative mechanism for down-regulation of HIF-dependent genes. Under hypoxic conditions, when oxygen-mediated regulation of the alpha-subunits is curtailed or minimized, dimerization of the alpha- and beta-subunits occurs with subsequent target gene upregulation. Therapeutic activation of HIF signaling has been suggested as a potential treatment for numerous conditions, including ischemia, stroke, heart attack, inflammation, and wounding. One possible route to achieve this is via inhibition of the HIF hydroxylases. This chapter details methods for the purification and assaying of PHD2, the most abundant PHD and the most important in setting steady-state levels of HIF-alpha. Assays are described that measure the activity of PHD2 via direct and indirect means. Furthermore, conditions for the screening of small molecules against PHD2 are described.
动物对氧可利用性的适应是由一种名为缺氧诱导因子(HIF)的转录因子介导的。HIF是一种α/β异二聚体,它能结合靶基因的缺氧反应元件(HRE),其中包括一些具有医学重要性的基因,如促红细胞生成素(EPO)和血管内皮生长因子(VEGF)。虽然HIF-β亚基作为一种组成型核蛋白,其浓度不会随氧可利用性而变化,但HIF-α亚基的丰度和活性通过特定残基的氧依赖性修饰受到严格调控。脯氨酰残基(HIF-1α中的Pro402和Pro564)的羟基化促进了与冯·希佩尔-林道E3泛素连接酶的相互作用,进而通过泛素-蛋白酶体途径导致蛋白水解破坏。这种脯氨酰羟基化由含脯氨酰羟化酶结构域(PHD)的酶催化,在人类中已鉴定出三种同工酶(1-3)。此外,因子抑制HIF(FIH)介导的天冬酰胺酰羟基化(HIF-1α中的Asn803)消除了HIF-α亚基与共激活因子p300的相互作用,为下调HIF依赖性基因提供了另一种机制。在缺氧条件下,当氧介导的α亚基调控受到抑制或降至最低时,α亚基和β亚基会发生二聚化,随后靶基因上调。HIF信号通路的治疗性激活已被认为是治疗多种疾病的潜在方法,包括缺血、中风、心脏病发作、炎症和创伤。实现这一目标的一种可能途径是通过抑制HIF羟化酶。本章详细介绍了PHD2的纯化和检测方法,PHD2是最丰富的PHD,在设定HIF-α的稳态水平方面最为重要。文中描述了通过直接和间接手段测量PHD2活性的检测方法。此外,还介绍了筛选针对PHD2的小分子的条件。