Suppr超能文献

退伍军人健康管理局中中风后抑郁症的病例发现算法

Case-finding algorithm for post-stroke depression in the veterans health administration.

作者信息

Damush Teresa M, Jia Huanguang, Ried L Doug, Qin Haijing, Cameon Randi, Plue Laurie, Williams Linda S

机构信息

The Stroke QUERI Center, Richard L. Roudebush VAMC HSR&D, Indianapolis, IN 46202, USA.

出版信息

Int J Geriatr Psychiatry. 2008 May;23(5):517-22. doi: 10.1002/gps.1930.

Abstract

OBJECTIVES

Post-stroke depression (PSD) is prevalent, often undiagnosed, and undertreated. The accuracy of detecting patients with post-stroke depression in administrative databases has not been examined.The objective was to validate a case-finding algorithm for post-stroke depression (PSD) among veteran stroke survivors.

METHODS

We conducted a retrospective cohort study of veterans admitted to two local VHA facilities for an inpatient episode of care for acute ischemic stroke. Our cohort included all patients from two medical centers who were identified in the fiscal year (FY) 2001 VHA inpatient database using high specificity stroke ICD-9 codes. FY 2002 VHA and Medicare inpatient, outpatient, and pharmacy data were used to examine the patients' 12-month PSD status by using ICD-9 depression codes and antidepressant use. We assessed our accuracy about patients' PSD from the administrative databases through standardized chart reviews.

RESULTS

Of our 185 subject cohort, 50 (27%) were identified as having PSD. The most sensitive case-finding algorithm for PSD included having an ICD-9 code diagnosis for depression or receiving a prescription for an approved-dosage of antidepressant medication. However, the algorithm of receiving an ICD-9 code for primary or secondary diagnoses of depression revealed the largest positive predictive value.

CONCLUSIONS

A case-finding algorithm using outpatient ICD-9 codes or medication was the most sensitive in identifying cases of PSD. The use of ICD-9 codes alone may be adequate for characterizing a cohort with PSD. Intention for use should be considered when choosing an algorithm to detect PSD.

摘要

目的

卒中后抑郁(PSD)很常见,常常未被诊断和治疗。行政数据库中检测卒中后抑郁患者的准确性尚未得到检验。目的是验证一种针对退伍军人卒中幸存者的卒中后抑郁(PSD)病例发现算法。

方法

我们对入住当地两家退伍军人健康管理局(VHA)机构接受急性缺血性卒中住院治疗的退伍军人进行了一项回顾性队列研究。我们的队列包括2001财年VHA住院数据库中使用高特异性卒中ICD - 9编码识别出的来自两个医疗中心的所有患者。2002财年VHA和医疗保险的住院、门诊及药房数据用于通过ICD - 9抑郁编码和抗抑郁药使用情况检查患者的12个月PSD状态。我们通过标准化病历审查评估行政数据库中关于患者PSD的准确性。

结果

在我们的185名受试者队列中,50名(27%)被确定患有PSD。最敏感的PSD病例发现算法包括有ICD - 9抑郁编码诊断或接受批准剂量抗抑郁药物的处方。然而,用于抑郁的一级或二级诊断的ICD - 9编码算法显示出最大的阳性预测值。

结论

使用门诊ICD - 9编码或药物的病例发现算法在识别PSD病例方面最敏感。仅使用ICD - 9编码可能足以对PSD队列进行特征描述。选择检测PSD的算法时应考虑使用意图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验