Suppr超能文献

使用柔性压电薄膜传感器和经验模态分解法监测睡眠期间的呼吸和心跳。

Monitoring of respiration and heartbeat during sleep using a flexible piezoelectric film sensor and empirical mode decomposition.

作者信息

Bu Nan, Ueno Naohiro, Fukuda Osamu

机构信息

On-site Sensing and Diagnosis Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1362-6. doi: 10.1109/IEMBS.2007.4352551.

Abstract

Cardio-respiratory monitoring during sleep is one of the basic means for assessment of personal health, and has been widely used in diagnosis of sleep disorders. This paper proposes a novel method for non-invasive and unconstrained measurement of respiration and heartbeat during sleep. A flexible piezoelectric film sensor made of aluminum nitride (AlN) material is used in this study. This sensor measures pressure fluctuation due to respiration and heartbeat on the contact surface when a subject is lying on it. Since the AlN film sensor has good sensitivity, the pressure fluctuation measured can be further separated into signals corresponding to respiration and heartbeat, respectively. In the proposed method, the signal separation is achieved using an algorithm based on empirical mode decomposition (EMD). Experiments have been conducted with three subjects. The experimental results show that respiration and heartbeat signals can be successfully obtained with the proposed method.

摘要

睡眠期间的心肺监测是评估个人健康的基本手段之一,已广泛应用于睡眠障碍的诊断。本文提出了一种在睡眠期间对呼吸和心跳进行无创、无约束测量的新方法。本研究使用了一种由氮化铝(AlN)材料制成的柔性压电薄膜传感器。当受试者躺在该传感器上时,它会测量接触表面因呼吸和心跳引起的压力波动。由于AlN薄膜传感器具有良好的灵敏度,所测量的压力波动可以进一步分别分离为对应于呼吸和心跳的信号。在所提出的方法中,信号分离是使用基于经验模态分解(EMD)的算法实现的。对三名受试者进行了实验。实验结果表明,所提出的方法能够成功获取呼吸和心跳信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验