Suppr超能文献

基于全基因组共表达的差异表达预测。

Genome-wide co-expression based prediction of differential expressions.

作者信息

Lai Yinglei

机构信息

Department of Statistics and Biostatistics Center, The George Washington University, 2140 Pennsylvania Avenue, NW Washington, DC 20052, USA.

出版信息

Bioinformatics. 2008 Mar 1;24(5):666-73. doi: 10.1093/bioinformatics/btm507. Epub 2007 Nov 15.

Abstract

MOTIVATION

Microarrays have been widely used for medical studies to detect novel disease-related genes. They enable us to study differential gene expressions at a genomic level. They also provide us with informative genome-wide co-expressions. Although many statistical methods have been proposed for identifying differentially expressed genes, genome-wide co-expressions have not been well considered for this issue. Incorporating genome-wide co-expression information in the differential expression analysis may improve the detection of disease-related genes.

RESULTS

In this study, we proposed a statistical method for predicting differential expressions through the local regression between differential expression and co-expression measures. The smoother span parameter was determined by optimizing the rank correlation between the observed and predicted differential expression measures. A mixture normal quantile-based method was used to transform data. We used the gene-specific permutation procedure to evaluate the significance of a prediction. Two published microarray data sets were analyzed for applications. For the data set collected for a prostate cancer study, the proposed method identified many genes with weak differential expressions. Several of these genes have been shown in literature to be associated with the disease. For the data set collected for a type 2 diabetes study, no significant genes could be identified by the traditional methods. However, the proposed method identified many genes with significantly low false discovery rates.

AVAILABILITY

The R codes are freely available at http://home.gwu.edu/~ylai/research/CoDiff, where the gene lists ranked by our method are also provided as the Supplementary Material.

摘要

动机

微阵列已广泛应用于医学研究,以检测新的疾病相关基因。它们使我们能够在基因组水平上研究差异基因表达。它们还为我们提供了全基因组范围内丰富的共表达信息。尽管已经提出了许多统计方法来识别差异表达基因,但在这个问题上,全基因组共表达尚未得到充分考虑。在差异表达分析中纳入全基因组共表达信息可能会提高对疾病相关基因的检测。

结果

在本研究中,我们提出了一种统计方法,通过差异表达与共表达测量之间的局部回归来预测差异表达。通过优化观察到的和预测的差异表达测量之间的秩相关性来确定平滑跨度参数。使用基于混合正态分位数的方法对数据进行转换。我们使用基因特异性置换程序来评估预测的显著性。对两个已发表的微阵列数据集进行了分析以用于实际应用。对于为前列腺癌研究收集的数据集,所提出的方法识别出许多差异表达较弱的基因。文献中已表明其中一些基因与该疾病相关。对于为2型糖尿病研究收集的数据集,传统方法无法识别出显著基因。然而,所提出的方法识别出许多错误发现率显著较低的基因。

可用性

R代码可在http://home.gwu.edu/~ylai/research/CoDiff免费获取,其中还提供了按我们的方法排名的基因列表作为补充材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验