Suppr超能文献

基因组特征使非小细胞肺癌的治疗决策个性化。

Genomic signatures individualize therapeutic decisions in non-small-cell lung cancer.

作者信息

Anguiano Ariel, Potti Anil

机构信息

Institute for Genome Sciences and Policy, Division of Medical Oncology, Box 3382, 101 Science Drive, Duke University, Durham, NC 27708, USA.

出版信息

Expert Rev Mol Diagn. 2007 Nov;7(6):837-44. doi: 10.1586/14737159.7.6.837.

Abstract

Gene expression signatures have been developed in an effort to dissect the biologic phenotypes of malignancies. These signatures have tremendous power to identify new cancer subtypes and to predict clinical outcomes based on patterns of gene expression. Expression profiles specific to a phenotype can be derived from in vitro data, as well as from patient cohorts with clinically relevant outcomes. In addition to predicting outcomes in non-small-cell lung cancer (NSCLC), similar techniques have been used to develop gene expression signatures that predict sensitivity or resistance to specific chemotherapeutic agents. Additionally, expression data have been used to identify oncogenic pathway deregulation to help direct the use of targeted agents. Used in combination, it is likely that gene expression signatures will help assess prognosis and may also be of value in guiding the use of cytotoxic and targeted therapy in NSCLC. Clinical trials are ongoing to validate these predictive gene expression signatures in a prospective manner.

摘要

为剖析恶性肿瘤的生物学表型,已开发出基因表达特征。这些特征在识别新的癌症亚型以及基于基因表达模式预测临床结果方面具有巨大潜力。特定表型的表达谱可从体外数据以及具有临床相关结果的患者队列中获得。除了预测非小细胞肺癌(NSCLC)的结果外,类似技术已被用于开发预测对特定化疗药物敏感性或耐药性的基因表达特征。此外,表达数据已被用于识别致癌途径失调,以帮助指导靶向药物的使用。综合使用时,基因表达特征可能有助于评估预后,也可能在指导NSCLC中细胞毒性和靶向治疗的使用方面具有价值。正在进行临床试验以前瞻性方式验证这些预测性基因表达特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验