Kotera Mai, Sekioka Yusuke, Suzuki Takayoshi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Inorg Chem. 2008 May 5;47(9):3498-508. doi: 10.1021/ic701631k. Epub 2007 Nov 28.
Several new mono- and dinuclear eta (5)-pentamethylcyclopentadienyl (Cp*) iridium(III) complexes bearing 5-methyltetrazolate (MeCN 4 (-)) have been synthesized and their molecular and crystal structures have been determined. For complexes incorporating 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), both mononuclear kappa N (2)-coordinated and dinuclear mu-kappa N (1):kappa N (3)-bridging MeCN 4 complexes were obtained: [CpIr(bpy or phen)(MeCN 4-kappa N (2))]PF 6 ( 1 or 3) and [{Cp*Ir(bpy or phen)} 2(mu-MeCN 4-kappa N (1):kappa N (3))](PF 6) 3 ( 2 or 4), respectively. It was confirmed by X-ray analysis that the dinuclear complex in 2 has a characteristic structure with a pyramidal pocket constructed from a mu-kappa N (1):kappa N (3)-bridging MeCN 4 (-) and two bpy ligands. In the case of analogous complexes with N, N-dimethyldithiocarbamate (Me 2dtc (-)), yellow platelet crystals of mononuclear kappa N (1)-coordinated complex, [CpIr(Me 2dtc)(MeCN 4-kappa N (1))].HN 4CMe ( 5.HN 4CMe), and yellow prismatic crystals of dinuclear mu-kappa N (1):kappa N (4)-bridging one, [{CpIr(Me 2dtc)} 2(mu-MeCN 4-kappa N (1):kappa N (4))]PF 6 ( 6), were deposited. The kappa N (1)- and kappa N (1):kappa N (4)-bonding modes of MeCN 4 (-) in these complexes presumably arise from the compactness of the Me 2dtc (-) coligand. 6 is the first example in which tetrazolates act as a mu-kappa N (1):kappa N (4)-bridging ligand. Furthermore, the molecular and crystal structures of dinuclear complexes having mu-kappa (2) S, N:kappa S-bridging 2-pyridinethiolate (2-Spy (-)) or 8-quinolinethiolate (8-Sqn (-)) ligands have been determined: [(CpIr) 2(mu-2-Spy or 8-Sqn-kappa (2) S, N:kappa S) 2] ( 7 or 8). These thiolato-bridging complexes were stable toward the addition of 5-methyltetrazole (HN 4CMe), owing to the characteristic intramolecular stacking interaction between the pyridine or the quinoline rings. The 2-Spy complex of 7, however, reacted with an excess amount of Na(N 4CMe), resulting in cleavage of the IrN(py) bond and coordination of MeCN 4 (-) in the mu-kappa N (2):kappa N (3)-bridging mode: [(CpIr) 2(mu-2-Spy-kappa S:kappa S) 2(mu-MeCN 4-kappa N (2):kappa N (3))]PF 6 ( 9). This bridging mode of MeCN 4 (-) was also observed in the triply bridging MeCN 4 complex: [(CpIr) 2(mu-MeCN 4-kappa N (2):kappa N (3)) 3]PF 6 ( 10). In these various MeCN 4 complexes, the structural parameters of the MeCN 4 moiety were not perturbed by the difference in the bonding modes.
合成了几种带有5-甲基四唑盐(MeCN₄⁻)的新型单核和双核η⁵-五甲基环戊二烯基(Cp*)铱(III)配合物,并确定了它们的分子结构和晶体结构。对于含有2,2'-联吡啶(bpy)或1,10-菲咯啉(phen)的配合物,分别得到了单核κN(2)-配位和双核μ-κN(1):κN(3)-桥联的MeCN₄配合物:[CpIr(bpy或phen)(MeCN₄-κN(2))]PF₆(1或3)和{Cp*Ir(bpy或phen)}₂(μ-MeCN₄-κN(1):κN(3))₃(2或4)。X射线分析证实,2中的双核配合物具有由μ-κN(1):κN(3)-桥联的MeCN₄⁻和两个bpy配体构成的金字塔形口袋的特征结构。对于含有N,N-二甲基二硫代氨基甲酸盐(Me₂dtc⁻)的类似配合物,得到了单核κN(1)-配位配合物[CpIr(Me₂dtc)(MeCN₄-κN(1))].HN₄CMe(5.HN₄CMe)的黄色片状晶体和双核μ-κN(1):κN(4)-桥联配合物[{CpIr(Me₂dtc)}₂(μ-MeCN₄-κN(1):κN(4))]PF₆(6)的黄色棱柱形晶体。这些配合物中MeCN₄⁻的κN(1)-和κN(1):κN(4)-键合模式可能源于Me₂dtc⁻共配体的紧密性。6是四唑盐作为μ-κN(1):κN(4)-桥联配体的第一个例子。此外,还确定了具有μ-κ(2)S,N:κS-桥联2-吡啶硫醇盐(2-Spy⁻)或8-喹啉硫醇盐(8-Sqn⁻)配体的双核配合物的分子结构和晶体结构:[(CpIr)₂(μ-2-Spy或8-Sqn-κ(2)S,N:κS)₂](7或8)。由于吡啶或喹啉环之间的特征性分子内堆积相互作用,这些硫醇盐桥联配合物对5-甲基四唑(HN₄CMe)的加入是稳定的。然而,7的2-Spy配合物与过量的Na(N₄CMe)反应,导致IrN(py)键断裂,MeCN₄⁻以μ-κN(2):κN(3)-桥联模式配位:[(CpIr)₂(μ-2-Spy-κS:κS)₂(μ-MeCN₄-κN(2):κN(3))]PF₆(9)。在三重桥联的MeCN₄配合物[(CpIr)₂(μ-MeCN₄-κN(2):κN(3))₃]PF₆(10)中也观察到了MeCN₄⁻的这种桥联模式。在这些各种MeCN₄配合物中,MeCN₄部分的结构参数不受键合模式差异的干扰。