Lamb Gareth, Clarke Matthew, Slawin Alexandra M Z, Williams Bruce, Key Lesley
School of St. Andrews, University of St. Andrews, St. Andrews, Fife, UK KY16 9ST.
Dalton Trans. 2007 Dec 21(47):5582-9. doi: 10.1039/b712974b. Epub 2007 Oct 10.
The carbonylation of methanol to acetic acid is a hugely important catalytic process, and there are considerable cost and environmental advantages if a process could be designed that was tolerant of hydrogen impurities in the CO feed gas, while eliminating by-products such as propionic acid and acetaldehyde altogether. This paper reports on an investigation into the application of rhodium complexes of several C(4) bridged diphosphines, namely BINAP, 1,4-bis(diphenylphosphino)butane (dppb), bis(diphenylphosphino)xylene (dppx) and 1,4-bis(dicyclohexylphosphino)butane (dcpb) as catalysts for hydrogen tolerant methanol carbonylation. An investigation into the structure, reactivity and stability of pre-catalysts and catalyst resting states of these complexes has also been carried out in order to understand the observations in catalysis. Rh(I) carbonyl halide complexes of each of the ligands have been prepared from both [Rh(2)(CO)(4)Cl(2)] and dimeric mu-Cl-Rh(L)Cl complexes. These Rh(I) carbonyl complexes are either dimeric with bridging phosphine ligands (dppb, dcpb, dppx) or monomeric chelate complexes. The reaction of the complexes with methyl iodide at 140 degrees C has been studied, which has revealed clear differences in the stability of the corresponding Rh(III) complexes. Surprisingly, the dimeric Rh(I) carbonyls react cleanly with MeI with rearrangement of the diphosphine to a chelate co-ordination mode to give stable Rh(III) acetyl complexes. The Rh acetyls for L=dppb and dppx have been fully characterised by X-ray crystallography. During the catalytic studies, the more rigid dppx and BINAP ligands were found to be nearly 5 times more hydrogen tolerant than Rh(CO)(2)I(2), as revealed by by-product analysis. The origin of this hydrogen tolerance is explained based on the differing reactivities of the Rh acetyls with hydrogen gas, and by considering the structure of the complexes.
甲醇羰基化制乙酸是一个极为重要的催化过程。如果能够设计出一种工艺,使其能够耐受一氧化碳原料气中的氢气杂质,同时完全消除丙酸和乙醛等副产物,那么在成本和环境方面将具有显著优势。本文报道了对几种C(4)桥连二膦铑配合物(即联萘酚膦(BINAP)、1,4 - 双(二苯基膦基)丁烷(dppb)、双(二苯基膦基)二甲苯(dppx)和1,4 - 双(二环己基膦基)丁烷(dcpb))作为耐氢甲醇羰基化催化剂应用的研究。为了理解催化过程中的观察结果,还对这些配合物的预催化剂和催化剂静止态的结构、反应性和稳定性进行了研究。每种配体的Rh(I)羰基卤化物配合物均由[Rh₂(CO)₄Cl₂]和二聚体μ - Cl - [Rh(L)Cl]₂配合物制备而成。这些Rh(I)羰基配合物要么是带有桥连膦配体(dppb、dcpb、dppx)的二聚体,要么是单体螯合物配合物。研究了这些配合物在140℃下与碘甲烷的反应,结果表明相应的Rh(III)配合物在稳定性上存在明显差异。令人惊讶的是,二聚体Rh(I)羰基化合物与MeI能发生干净的反应,二膦发生重排形成螯合配位模式,生成稳定的Rh(III)乙酰基配合物。L = dppb和dppx的Rh乙酰基配合物已通过X射线晶体学进行了全面表征。在催化研究过程中,通过副产物分析发现,刚性更强的dppx和BINAP配体的耐氢性几乎是[Rh(CO)₂I₂]⁻的5倍。基于Rh乙酰基配合物与氢气反应性的不同,并考虑配合物的结构,解释了这种耐氢性的来源。