Suppr超能文献

尖峰序列预测的估值

Valuations for spike train prediction.

作者信息

Itskov Vladimir, Curto Carina, Harris Kenneth D

机构信息

Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, U.S.A.

出版信息

Neural Comput. 2008 Mar;20(3):644-67. doi: 10.1162/neco.2007.3179.

Abstract

The ultimate product of an electrophysiology experiment is often a decision on which biological hypothesis or model best explains the observed data. We outline a paradigm designed for comparison of different models, which we refer to as spike train prediction. A key ingredient of this paradigm is a prediction quality valuation that estimates how close a predicted conditional intensity function is to an actual observed spike train. Although a valuation based on log likelihood (L) is most natural, it has various complications in this context. We propose that a quadratic valuation (Q) can be used as an alternative to L. Q shares some important theoretical properties with L, including consistency, and the two valuations perform similarly on simulated and experimental data. Moreover, Q is more robust than L, and optimization with Q can dramatically improve computational efficiency. We illustrate the utility of Q for comparing models of peer prediction, where it can be computed directly from cross-correlograms. Although Q does not have a straightforward probabilistic interpretation, Q is essentially given by Euclidean distance.

摘要

电生理实验的最终产物往往是一个关于哪种生物学假设或模型能最好地解释观测数据的决策。我们概述了一种为比较不同模型而设计的范式,我们将其称为尖峰序列预测。该范式的一个关键要素是预测质量评估,它估计预测的条件强度函数与实际观测到的尖峰序列的接近程度。尽管基于对数似然(L)的评估最为自然,但在这种情况下它有各种复杂之处。我们提出二次评估(Q)可以用作L的替代方法。Q与L具有一些重要的理论特性,包括一致性,并且这两种评估在模拟数据和实验数据上的表现相似。此外,Q比L更稳健,并且使用Q进行优化可以显著提高计算效率。我们说明了Q在比较同伴预测模型方面的效用,在这种情况下它可以直接从互相关图计算得出。尽管Q没有直接的概率解释,但Q本质上是由欧几里得距离给出的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验