Moreno Antonio, Chambon Sylvie, Santhanam Anand P, Brocardo Roberta, Kupelian Patrick, Rolland Jannick P, Angelini Elsa, Bloch Isabelle
Ecole Nationale Supérieure des Télécommunications (GET - Télécom Paris), CNRS UMR 5141 LTCI - Signal and Image Processing Department, Paris, France.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):626-33. doi: 10.1007/978-3-540-75757-3_76.
In the context of thoracic CT-PET volume registration, we present a novel method to incorporate a breathing model in a non-linear registration procedure, guaranteeing physiologically plausible deformations. The approach also accounts for the rigid motions of lung tumors during breathing. We performed a set of registration experiments on one healthy and four pathological data sets. Initial results demonstrate the interest of this method to significantly improve the accuracy of multimodal volume registration for diagnosis and radiotherapy applications.
在胸部CT-PET体积配准的背景下,我们提出了一种新方法,将呼吸模型纳入非线性配准过程中,以保证生理上合理的变形。该方法还考虑了呼吸过程中肺肿瘤的刚体运动。我们对一组健康数据集和四个病理数据集进行了一系列配准实验。初步结果表明,该方法对于显著提高多模态体积配准在诊断和放射治疗应用中的准确性具有重要意义。