Laporte Catherine, Arbel Tal
Centre for Intelligent Machines, McGill University, Montréal, Canada.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):925-32. doi: 10.1007/978-3-540-75757-3_112.
Recent developments in freehand 3D ultrasound (US) have shown how image registration and speckle decorrelation methods can be used for 3D reconstruction instead of relying on a tracking device. Estimating elevational separation between untracked US images using speckle decorrelation is error prone due to the uncertainty that plagues the correlation measurements. In this paper, using maximum entropy estimation methods, the uncertainty is directly modeled from the calibration data normally used to estimate an average decorrelation curve. Multiple correlation measurements can then be fused within a maximum likelihood estimation framework in order to reduce the drift in elevational pose estimation over large image sequences. The approach is shown to be effective through empirical results on simulated and phantom US data.
自由手绘三维超声(US)的最新进展表明,图像配准和散斑去相关方法可用于三维重建,而无需依赖跟踪设备。由于困扰相关测量的不确定性,使用散斑去相关估计未跟踪的超声图像之间的仰角间距容易出错。在本文中,使用最大熵估计方法,直接从通常用于估计平均去相关曲线的校准数据中对不确定性进行建模。然后,可以在最大似然估计框架内融合多个相关测量,以减少大图像序列中仰角姿态估计的漂移。通过对模拟和体模超声数据的实验结果表明,该方法是有效的。