Azimi-Sadjadi M R, Salazar J, Srinivasan S, Sheedvash S
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.
IEEE Trans Neural Netw. 2007 Nov;18(6):1597-613. doi: 10.1109/TNN.2007.895912.
This paper introduces a new connectionist network for certain domain-specific text-retrieval and search applications with expert end users. A new model reference adaptive system is proposed that involves three learning phases. Initial model-reference learning is first performed based upon an ensemble set of input-output of an initial reference model. Model-reference following is needed in dynamic environments where documents are added, deleted, or updated. Relevance feedback learning from multiple expert users then optimally maps the original query using either a score-based or a click-through selection process. The learning can be implemented, in regression or classification modes, using a three-layer network. The first layer is an adaptable layer that performs mapping from query domain to document space. The second and third layers perform document-to-term mapping, search/retrieval, and scoring tasks. The learning algorithms are thoroughly tested on a domain-specific text database that encompasses a wide range of Hewlett Packard (HP) products and for a large number of most commonly used single- and multiterm queries.
本文介绍了一种适用于特定领域文本检索和搜索应用的新型连接主义网络,其目标用户为专业终端用户。提出了一种新的模型参考自适应系统,该系统包含三个学习阶段。首先基于初始参考模型的一组输入输出进行初始模型参考学习。在文档添加、删除或更新的动态环境中,需要进行模型参考跟踪。然后,来自多个专家用户的相关反馈学习通过基于分数或点击选择过程对原始查询进行最优映射。可以使用三层网络以回归或分类模式实现学习。第一层是自适应层,执行从查询域到文档空间的映射。第二层和第三层执行文档到术语的映射、搜索/检索和评分任务。学习算法在一个特定领域的文本数据库上进行了全面测试,该数据库涵盖了广泛的惠普(HP)产品,并针对大量最常用的单术语和多术语查询进行了测试。