Sugimoto Hiromichi, Nakamura Satoshi, Ohwada Tomohiko
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
J Org Chem. 2007 Dec 21;72(26):10088-95. doi: 10.1021/jo702246w. Epub 2007 Dec 1.
Here, we describe mechanistic studies of the retro-Diels-Alder reaction of 4H-1,2-benzoxazines bearing various substituents on the benzene ring. 4H-1,2-Benzoxazines are very simple, but quite new, heterocyclic compounds that afford substituted o-quinone methides (o-QMs) through retro-Diels-Alder reaction under mild thermal conditions. The resultant o-QMs undergo Diels-Alder reaction in situ with dienophiles to give phenol and chroman derivatives. The mechanism of the generation of o-QMs has been little studied. Our experimental and density functional theory (DFT) studies have yielded the following results. (1) The generation of o-QMs, i.e., the retro-hetero-Diels-Alder reaction of 4H-1,2-benzoxazines, is rate determining, rather than the subsequent Diels-Alder reaction of the resultant o-QM with dienophiles. (2) The reaction rate is strongly influenced by the electronic features of substituents and the polarity of the solvent. The reaction proceeds faster in a polar solvent such as dimethyl sulfoxide, probably because of stabilization of the electronically polarized TS structure. (3) The reactions show characteristic positional effects of substitution on the benzene ring. While an electron-withdrawing group such as CF3 at C5, C6, or C7 positions decelerates the reaction, the same substituent at C8 accelerates the reaction, compared with the reaction of unsubstituted 4H-1,2-benzoxazine. In particular, substitution at C5 significantly decelerates the reaction as compared with the unsubstituted case. This is due to the difference in the inductive effect of CF3 at the different positions. Similar positional effects occur with a halogen (Cl) and a nitro group. All these data support the involvement of polarized TS structures, in which the O-N bond cleavage precedes the C-C bond cleavage.
在此,我们描述了对苯环上带有各种取代基的4H-1,2-苯并恶嗪的逆狄尔斯-阿尔德反应的机理研究。4H-1,2-苯并恶嗪是非常简单但相当新颖的杂环化合物,在温和的热条件下通过逆狄尔斯-阿尔德反应生成取代的邻醌甲基化物(o-QMs)。生成的o-QMs与亲双烯体原位发生狄尔斯-阿尔德反应,生成苯酚和色满衍生物。o-QMs生成的机理研究较少。我们的实验和密度泛函理论(DFT)研究得出了以下结果。(1)o-QMs的生成,即4H-1,2-苯并恶嗪的逆杂环狄尔斯-阿尔德反应,是速率决定步骤,而不是生成的o-QM与亲双烯体随后的狄尔斯-阿尔德反应。(2)反应速率受到取代基的电子特性和溶剂极性的强烈影响。在极性溶剂如二甲基亚砜中反应进行得更快,这可能是由于电子极化的过渡态(TS)结构的稳定。(3)反应显示出苯环上取代的特征位置效应。虽然在C5、C6或C7位置的吸电子基团如CF3会使反应减速,但与未取代的4H-1,2-苯并恶嗪反应相比,C8位置的相同取代基会加速反应。特别是,与未取代的情况相比,C5位置的取代显著减慢了反应。这是由于CF3在不同位置的诱导效应不同。卤素(Cl)和硝基也会出现类似的位置效应。所有这些数据都支持了极化TS结构的参与,其中O-N键的断裂先于C-C键的断裂。