Suppr超能文献

未磷酸化的肌动蛋白结合蛋白与肌动蛋白和肌球蛋白形成复合物,这可能有助于维持强直收缩中的张力。

Unphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch.

作者信息

Funabara Daisuke, Hamamoto Chieko, Yamamoto Koji, Inoue Akinori, Ueda Miki, Osawa Rika, Kanoh Satoshi, Hartshorne David J, Suzuki Suechika, Watabe Shugo

机构信息

Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan.

出版信息

J Exp Biol. 2007 Dec;210(Pt 24):4399-410. doi: 10.1242/jeb.008722.

Abstract

Molluscan smooth muscle can maintain tension over extended periods with little energy expenditure, a process termed catch. Catch is thought to be regulated by phosphorylation of a thick filament protein, twitchin, and involves two phosphorylation sites, D1 and D2, close to the N and C termini, respectively. This study was initiated to investigate the role of the D2 site and its phosphorylation in the catch mechanism. A peptide was constructed containing the D2 site and flanking immunoglobulin (Ig) motifs. It was shown that the dephosphorylated peptide, but not the phosphorylated form, bound to both actin and myosin. The binding site on actin was within the sequence L10 to P29. This region also binds to loop 2 of the myosin head. The dephosphorylated peptide linked myosin and F-actin and formed a trimeric complex. Electron microscopy revealed that twitchin is distributed on the surface of the thick filament with an axial periodicity of 36.25 nm and it is suggested that the D2 site aligns with the myosin heads. It is proposed that the complex formed with the dephosphorylated D2 site of twitchin, F-actin and myosin represents a component of the mechanical linkage in catch.

摘要

软体动物平滑肌能够在极少能量消耗的情况下长时间维持张力,这一过程称为强直收缩。强直收缩被认为是由一种粗肌丝蛋白——肌动球蛋白的磷酸化所调节的,并且涉及分别靠近N端和C端的两个磷酸化位点,即D1和D2。本研究旨在探究D2位点及其磷酸化在强直收缩机制中的作用。构建了一个包含D2位点和侧翼免疫球蛋白(Ig)基序的肽段。结果表明,去磷酸化的肽段而非磷酸化形式的肽段,能与肌动蛋白和肌球蛋白结合。肌动蛋白上的结合位点在L10至P29序列内。该区域也与肌球蛋白头部的环2结合。去磷酸化的肽段连接了肌球蛋白和F - 肌动蛋白并形成三聚体复合物。电子显微镜显示,肌动球蛋白以36.25 nm的轴向周期性分布在粗肌丝表面,并且推测D2位点与肌球蛋白头部对齐。有人提出,由肌动球蛋白的去磷酸化D2位点、F - 肌动蛋白和肌球蛋白形成的复合物代表了强直收缩中机械连接的一个组成部分。

相似文献

3
Myosin loop 2 is involved in the formation of a trimeric complex of twitchin, actin, and myosin.
J Biol Chem. 2009 Jul 3;284(27):18015-20. doi: 10.1074/jbc.M109.016485. Epub 2009 May 13.
4
The N-terminal region of twitchin binds thick and thin contractile filaments: redundant mechanisms of catch force maintenance.
J Biol Chem. 2010 Dec 24;285(52):40654-65. doi: 10.1074/jbc.M110.166041. Epub 2010 Oct 22.
5
Myosin Mg-ATPase of molluscan muscles is slightly activated by F-actin under catch state in vitro.
J Muscle Res Cell Motil. 2013 May;34(2):115-23. doi: 10.1007/s10974-013-9339-8. Epub 2013 Mar 28.
6
Molluscan catch muscle myorod and its N-terminal peptide bind to F-actin and myosin in a phosphorylation-dependent manner.
Arch Biochem Biophys. 2011 May 1;509(1):59-65. doi: 10.1016/j.abb.2011.02.010. Epub 2011 Feb 19.
8
Mechanism of catch force: tethering of thick and thin filaments by twitchin.
J Biomed Biotechnol. 2010;2010:725207. doi: 10.1155/2010/725207. Epub 2010 Jun 23.
9
Catch muscle of bivalve molluscs contains myosin- and twitchin-associated protein kinase phosphorylating myorod.
Biochim Biophys Acta. 2010 Apr;1804(4):884-90. doi: 10.1016/j.bbapap.2009.12.020. Epub 2010 Jan 13.
10
Molluscan twitchin can control actin-myosin interaction during ATPase cycle.
Arch Biochem Biophys. 2010 Mar 15;495(2):122-8. doi: 10.1016/j.abb.2010.01.001. Epub 2010 Jan 7.

引用本文的文献

1
The unique biology of catch muscles: insights into structure, function, and robotics innovations.
Front Bioeng Biotechnol. 2025 Apr 16;13:1478626. doi: 10.3389/fbioe.2025.1478626. eCollection 2025.
4
Mechanism and Function of the Catch State in Molluscan Smooth Muscle: A Historical Perspective.
Int J Mol Sci. 2020 Oct 14;21(20):7576. doi: 10.3390/ijms21207576.
5
Transcriptomic analysis of treated by a potential phytonematicide, punicalagin.
J Nematol. 2020;52:1-14. doi: 10.21307/jofnem-2020-001.
6
Passive force enhancement in striated muscle.
J Appl Physiol (1985). 2019 Jun 1;126(6):1782-1789. doi: 10.1152/japplphysiol.00676.2018. Epub 2019 May 9.
8
Why are muscles strong, and why do they require little energy in eccentric action?
J Sport Health Sci. 2018 Jul;7(3):255-264. doi: 10.1016/j.jshs.2018.05.005. Epub 2018 Jun 2.
9
Neural Control of Dynamic 3-Dimensional Skin Papillae for Cuttlefish Camouflage.
iScience. 2018 Mar 23;1:24-34. doi: 10.1016/j.isci.2018.01.001.
10
Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein.
Front Physiol. 2017 Feb 9;8:70. doi: 10.3389/fphys.2017.00070. eCollection 2017.

本文引用的文献

3
Catch force links and the low to high force transition of myosin.
Biophys J. 2006 May 1;90(9):3193-202. doi: 10.1529/biophysj.105.077453. Epub 2006 Feb 10.
4
Twitchin as a regulator of catch contraction in molluscan smooth muscle.
J Muscle Res Cell Motil. 2005;26(6-8):455-60. doi: 10.1007/s10974-005-9029-2.
8
Effects of vanadate, phosphate and 2,3-butanedione monoxime (BDM) on skinned molluscan catch muscle.
Pflugers Arch. 2005 Jan;449(4):372-83. doi: 10.1007/s00424-004-1350-x. Epub 2004 Oct 15.
9
Protein phosphatase 2B dephosphorylates twitchin, initiating the catch state of invertebrate smooth muscle.
J Biol Chem. 2004 Sep 24;279(39):40762-8. doi: 10.1074/jbc.M405191200. Epub 2004 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验