Yang Ping-Chun, Yang Chih-Hao, Huang Chiung-Chun, Hsu Kuei-Sen
Department of Pharmacology, College of Medicine, National Cheng-Kung University, 1 University Road, Tainan, Taiwan.
J Biol Chem. 2008 Feb 1;283(5):2631-43. doi: 10.1074/jbc.M706954200. Epub 2007 Dec 5.
Stress dramatically affects the induction of hippocampal synaptic plasticity; however, the molecular details of how it does so remain unclear. Phosphatidylinositol 3-kinase (PI3K) signaling plays a crucial role in promoting neuronal survival and neuroplasticity, but its role, if any, in stress-induced alterations of long term potentiation (LTP) and long term depression (LTD) is unknown. We found here that inhibitors of PI3K signaling blocked the effects of acute restraint-tail shock stress protocol on LTP and LTD. Therefore, the purpose of the present study is to explore the signaling events involving PI3K in terms of its role in mediating stress protocol-induced alterations of LTP and LTD. We found that stress protocol-induced PI3K activation can be blocked by various inhibitors, including RU38486 for glucocorticoid receptors, LY294002 for PI3K, and dl-2-amino-5-phosphonopentanoic acid for N-methyl-D-aspartate receptors or brain-derived neurotrophic factor antisense oligonucleotides. Also, immunoblotting analyses revealed that stress protocol induced a profound and prolonged phosphorylation of numbers of PI3K downstream effectors, including 3-phosphoinositide-dependent protein kinase-1, protein kinase B, mammalian target of rapamycin (mTOR), p70 S6 kinase, and eukaryotic initiation factor 4B in hippocampal CA1 homogenate, which was prevented by the PI3K inhibitor pretreatment. More importantly, we found that stress protocol significantly increased the protein expression of dendritic scaffolding protein PSD-95 (postsynaptic density-95), which is known to be involved in LTP and LTD, in an mTOR-dependent manner. These results identify a key role of PI3K signaling in mediating the stress protocol-induced modification of hippocampal synaptic plasticity and further suggest that PI3K may do so by invoking the protein expression of PSD-95.
应激显著影响海马体突触可塑性的诱导;然而,其具体作用的分子细节仍不清楚。磷脂酰肌醇3激酶(PI3K)信号传导在促进神经元存活和神经可塑性方面发挥着关键作用,但其在应激诱导的长时程增强(LTP)和长时程抑制(LTD)改变中的作用(如果有)尚不清楚。我们在此发现,PI3K信号传导抑制剂可阻断急性束缚-尾部电击应激方案对LTP和LTD的影响。因此,本研究的目的是探讨PI3K在介导应激方案诱导的LTP和LTD改变中的作用所涉及的信号事件。我们发现,应激方案诱导的PI3K激活可被多种抑制剂阻断,包括用于糖皮质激素受体的RU38486、用于PI3K的LY294002以及用于N-甲基-D-天冬氨酸受体或脑源性神经营养因子反义寡核苷酸的dl-2-氨基-5-磷酸戊酸。此外,免疫印迹分析显示,应激方案可诱导海马CA1匀浆中PI3K下游多种效应分子的深度和长时间磷酸化,包括3-磷酸肌醇依赖性蛋白激酶-1、蛋白激酶B、雷帕霉素哺乳动物靶蛋白(mTOR)、p70 S6激酶和真核起始因子4B,而PI3K抑制剂预处理可阻止这种磷酸化。更重要的是,我们发现应激方案以mTOR依赖的方式显著增加了树突支架蛋白PSD-95(突触后致密物-95)的蛋白表达,已知该蛋白参与LTP和LTD。这些结果确定了PI3K信号传导在介导应激方案诱导的海马突触可塑性改变中的关键作用,并进一步表明PI3K可能通过引发PSD-95的蛋白表达来实现这一作用。