Suppr超能文献

在伸手过程中根据运动皮层放电预测上肢肌肉活动。

Prediction of upper limb muscle activity from motor cortical discharge during reaching.

作者信息

Pohlmeyer Eric A, Solla Sara A, Perreault Eric J, Miller Lee E

机构信息

Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.

出版信息

J Neural Eng. 2007 Dec;4(4):369-79. doi: 10.1088/1741-2560/4/4/003. Epub 2007 Nov 12.

Abstract

Movement representation by the motor cortex (M1) has been a theoretical interest for many years, but in the past several years it has become a more practical question, with the advent of the brain-machine interface. An increasing number of groups have demonstrated the ability to predict a variety of kinematic signals on the basis of M1 recordings and to use these predictions to control the movement of a cursor or robotic limb. We, on the other hand, have undertaken the prediction of myoelectric (EMG) signals recorded from various muscles of the arm and hand during button pressing and prehension movements. We have shown that these signals can be predicted with accuracy that is similar to that of kinematic signals, despite their stochastic nature and greater bandwidth. The predictions were made using a subset of 12 or 16 neural signals selected in the order of each signal's unique, output-related information content. The accuracy of the resultant predictions remained stable through a typical experimental session. Accuracy remained above 80% of its initial level for most muscles even across periods as long as two weeks. We are exploring the use of these predictions as control signals for neuromuscular electrical stimulation in quadriplegic patients.

摘要

多年来,运动皮层(M1)对运动的表征一直是理论研究的热点,但在过去几年里,随着脑机接口的出现,它已成为一个更具现实意义的问题。越来越多的研究团队已证明,基于M1记录能够预测各种运动学信号,并利用这些预测来控制光标或机器人肢体的运动。另一方面,我们致力于预测在按下按钮和抓握动作期间从手臂和手部的不同肌肉记录到的肌电(EMG)信号。我们已经表明,尽管这些信号具有随机性和更大的带宽,但仍能以与运动学信号相似的精度进行预测。预测是使用按每个信号独特的、与输出相关的信息含量排序选出的12或16个神经信号子集进行的。在一个典型的实验过程中,所得预测的准确性保持稳定。即使在长达两周的时间段内,大多数肌肉的预测准确性仍保持在初始水平的80%以上。我们正在探索将这些预测用作四肢瘫痪患者神经肌肉电刺激控制信号的用途。

相似文献

1
Prediction of upper limb muscle activity from motor cortical discharge during reaching.
J Neural Eng. 2007 Dec;4(4):369-79. doi: 10.1088/1741-2560/4/4/003. Epub 2007 Nov 12.
2
Kinetic trajectory decoding using motor cortical ensembles.
IEEE Trans Neural Syst Rehabil Eng. 2009 Oct;17(5):487-96. doi: 10.1109/TNSRE.2009.2029313. Epub 2009 Aug 7.
3
Muscle Synergies Obtained from Comprehensive Mapping of the Cortical Forelimb Representation Using Stimulus Triggered Averaging of EMG Activity.
J Neurosci. 2018 Oct 10;38(41):8759-8771. doi: 10.1523/JNEUROSCI.2519-17.2018. Epub 2018 Aug 27.
4
Cortical representation of ipsilateral arm movements in monkey and man.
J Neurosci. 2009 Oct 14;29(41):12948-56. doi: 10.1523/JNEUROSCI.2471-09.2009.
5
7
Primary motor cortical neurons encode functional muscle synergies.
Exp Brain Res. 2002 Sep;146(2):233-43. doi: 10.1007/s00221-002-1166-x. Epub 2002 Jul 25.
10
Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5802-6. doi: 10.1109/IEMBS.2011.6091436.

引用本文的文献

1
Regional specialization of movement encoding across the primate sensorimotor cortex.
Nat Commun. 2025 Jul 1;16(1):5729. doi: 10.1038/s41467-025-61172-8.
2
Less is more: selection from a small set of options improves BCI velocity control.
J Neural Eng. 2025 Mar 17;22(2). doi: 10.1088/1741-2552/adbcd9.
4
Decoding Continuous Tracking Eye Movements from Cortical Spiking Activity.
Int J Neural Syst. 2025 Jan;35(1):2450070. doi: 10.1142/S0129065724500709. Epub 2024 Nov 15.
6
Less is more: selection from a small set of options improves BCI velocity control.
bioRxiv. 2024 Jun 3:2024.06.03.596241. doi: 10.1101/2024.06.03.596241.
8
Intracortical brain-computer interfaces in primates: a review and outlook.
Biomed Eng Lett. 2023 May 25;13(3):375-390. doi: 10.1007/s13534-023-00286-8. eCollection 2023 Aug.
10
The science and engineering behind sensitized brain-controlled bionic hands.
Physiol Rev. 2022 Apr 1;102(2):551-604. doi: 10.1152/physrev.00034.2020. Epub 2021 Sep 20.

本文引用的文献

1
Direct comparison of the task-dependent discharge of M1 in hand space and muscle space.
J Neurophysiol. 2007 Feb;97(2):1786-98. doi: 10.1152/jn.00150.2006. Epub 2006 Nov 22.
2
A high-performance brain-computer interface.
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.
3
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
4
Muscle representation in the macaque motor cortex: an anatomical perspective.
Proc Natl Acad Sci U S A. 2006 May 23;103(21):8257-62. doi: 10.1073/pnas.0602933103. Epub 2006 May 15.
6
Bayesian population decoding of motor cortical activity using a Kalman filter.
Neural Comput. 2006 Jan;18(1):80-118. doi: 10.1162/089976606774841585.
7
Frontal and parietal cortical ensembles predict single-trial muscle activity during reaching movements in primates.
Eur J Neurosci. 2005 Sep;22(6):1529-40. doi: 10.1111/j.1460-9568.2005.04320.x.
8
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54. doi: 10.1073/pnas.0403504101. Epub 2004 Dec 7.
9
10
Ascertaining the importance of neurons to develop better brain-machine interfaces.
IEEE Trans Biomed Eng. 2004 Jun;51(6):943-53. doi: 10.1109/TBME.2004.827061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验