Perez Adriana, Chan Wenyaw, Dennis Rodolfo J
The University of Texas Health Science Center at Houston, School of Public Health, Division of Biostatistics, 80 Fort Brown, SPH Rm N.200, Brownsville, TX 78520, USA.
Health Serv Outcomes Res Methodol. 2006 Dec;6(3-4):127-138. doi: 10.1007/s10742-006-0009-9.
For patients admitted to intensive care units (ICU), the length of stay in different destinations after the first day of ICU admission, has not been systematically studied. We aimed to estimate the average length of stay (LOS) of such patients in Colombia, using a discrete time Markov process. We used the maximum likelihood method and Markov chain modeling to estimate the average LOS in the ICU and at each destination after discharge from intensive care. Six Markov models were estimated, describing the LOS in each one of the Cardiovascular, Neurological, Respiratory, Gastrointestinal, Trauma and Other diagnostic groups from the ultimate primary reason for admission to ICU. Possible destinations were: the intensive care unit, ward in the same hospital, the high dependency unit/intermediate care area in the same hospital, ward in other hospital, intensive care unit in other hospital, other hospital, other location same hospital, discharge from same hospital and death. The stationary property was tested and using a split-sample analysis, we provide indirect evidence about the appropriateness of the Markov property. It is not possible to use a unique Markov chain model for each diagnostic group. The length of stay varies across the ultimate primary reason for admission to intensive care. Although our Markov models shown to be predictive, the fact that current available statistical methods do not allow us to verify the Markov property test is a limitation. Clinicians may be able to provide information about the hospital LOS by diagnostic groups for different hospital destinations.
对于入住重症监护病房(ICU)的患者,在入住ICU首日之后在不同去向的住院时长尚未得到系统研究。我们旨在使用离散时间马尔可夫过程来估计此类患者在哥伦比亚的平均住院时长(LOS)。我们采用最大似然法和马尔可夫链建模来估计ICU内以及从重症监护出院后在每个去向的平均LOS。估计了六个马尔可夫模型,这些模型根据入住ICU的最终主要原因描述了心血管、神经、呼吸、胃肠、创伤和其他诊断组中每组的LOS。可能的去向包括:重症监护病房、同一家医院的病房、同一家医院的高依赖病房/中级护理区域、其他医院的病房、其他医院的重症监护病房、其他医院、同一家医院的其他地点、从同一家医院出院和死亡。对平稳性进行了检验,并通过拆分样本分析,我们提供了关于马尔可夫性质适用性的间接证据。不可能针对每个诊断组使用唯一的马尔可夫链模型。住院时长因入住重症监护的最终主要原因而异。尽管我们的马尔可夫模型显示具有预测性,但当前可用的统计方法不允许我们验证马尔可夫性质检验这一事实是一个局限性。临床医生或许能够按诊断组提供不同医院去向的医院LOS信息。