Bell James R, Kennington Erika, Fuller William, Dighe Kushal, Donoghue Pamela, Clark James E, Jia Li-Guo, Tucker Amy L, Moorman J Randall, Marber Michael S, Eaton Philip, Dunn Michael J, Shattock Michael J
Cardiovascular Division, King's College London, Rayne Institute, St Thomas' Hospital, London , UK.
Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H613-21. doi: 10.1152/ajpheart.01332.2007. Epub 2007 Dec 7.
Phospholemman (PLM, FXYD1), abundantly expressed in the heart, is the primary cardiac sarcolemmal substrate for PKA and PKC. Evidence supports the hypothesis that PLM is part of the cardiac Na-K pump complex and provides the link between kinase activity and pump modulation. PLM has also been proposed to modulate Na/Ca exchanger activity and may be involved in cell volume regulation. This study characterized the phenotype of the PLM knockout (KO) mouse heart to further our understanding of PLM function in the heart. PLM KO mice were bred on a congenic C57/BL6 background. In vivo conductance catheter measurements exhibited a mildly depressed cardiac contractile function in PLM KO mice, which was exacerbated when hearts were isolated and Langendorff perfused. There were no significant differences in action potential morphology in paced Langendorff-perfused hearts. Depressed contractile function was associated with a mild cardiac hypertrophy in PLM KO mice. Biochemical analysis of crude ventricular homogenates showed a significant increase in Na-K-ATPase activity in PLM KO hearts compared with wild-type controls. SDS-PAGE and Western blot analysis of ventricular homogenates revealed small, nonsignificant changes in Na- K-ATPase subunit expression, with two-dimensional gel (isoelectric focusing, SDS-PAGE) analysis revealing minimal changes in ventricular protein expression, indicating that deletion of PLM was the primary reason for the observed PLM KO phenotype. These studies demonstrate that PLM plays an important role in the contractile function of the normoxic mouse heart. Data are consistent with the hypothesis that PLM modulates Na-K-ATPase activity, indirectly affecting intracellular Ca and hence contractile function.
磷肌膜蛋白(PLM,FXYD1)在心脏中大量表达,是蛋白激酶A(PKA)和蛋白激酶C(PKC)的主要心肌肌膜底物。有证据支持以下假说:PLM是心脏钠钾泵复合物的一部分,并在激酶活性与泵调节之间起连接作用。也有人提出PLM可调节钠钙交换体活性,并且可能参与细胞体积调节。本研究对PLM基因敲除(KO)小鼠心脏的表型进行了特征分析,以进一步了解PLM在心脏中的功能。PLM基因敲除小鼠在同基因C57/BL6背景下繁殖。体内电导导管测量显示,PLM基因敲除小鼠的心脏收缩功能轻度降低,当心脏离体并进行Langendorff灌注时,这种情况会加剧。在Langendorff灌注的起搏心脏中,动作电位形态没有显著差异。收缩功能降低与PLM基因敲除小鼠的轻度心脏肥大有关。与野生型对照相比,对粗制心室匀浆进行生化分析显示,PLM基因敲除心脏中的钠钾ATP酶活性显著增加。对心室匀浆进行十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白质免疫印迹分析显示,钠钾ATP酶亚基表达有微小且无统计学意义的变化,二维凝胶(等电聚焦,SDS-PAGE)分析显示心室蛋白表达变化极小,表明PLM的缺失是观察到的PLM基因敲除表型的主要原因。这些研究表明PLM在常氧小鼠心脏的收缩功能中起重要作用。数据与以下假说一致:PLM调节钠钾ATP酶活性,间接影响细胞内钙,从而影响收缩功能。