Suppr超能文献

整合高内涵筛选与配体-靶点预测以确定作用机制。

Integrating high-content screening and ligand-target prediction to identify mechanism of action.

作者信息

Young Daniel W, Bender Andreas, Hoyt Jonathan, McWhinnie Elizabeth, Chirn Gung-Wei, Tao Charles Y, Tallarico John A, Labow Mark, Jenkins Jeremy L, Mitchison Timothy J, Feng Yan

机构信息

Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

Nat Chem Biol. 2008 Jan;4(1):59-68. doi: 10.1038/nchembio.2007.53. Epub 2007 Dec 9.

Abstract

High-content screening is transforming drug discovery by enabling simultaneous measurement of multiple features of cellular phenotype that are relevant to therapeutic and toxic activities of compounds. High-content screening studies typically generate immense datasets of image-based phenotypic information, and how best to mine relevant phenotypic data is an unsolved challenge. Here, we introduce factor analysis as a data-driven tool for defining cell phenotypes and profiling compound activities. This method allows a large data reduction while retaining relevant information, and the data-derived factors used to quantify phenotype have discernable biological meaning. We used factor analysis of cells stained with fluorescent markers of cell cycle state to profile a compound library and cluster the hits into seven phenotypic categories. We then compared phenotypic profiles, chemical similarity and predicted protein binding activities of active compounds. By integrating these different descriptors of measured and potential biological activity, we can effectively draw mechanism-of-action inferences.

摘要

高内涵筛选正在改变药物研发方式,它能够同时测量与化合物治疗及毒性活性相关的细胞表型的多个特征。高内涵筛选研究通常会生成基于图像的大量表型信息数据集,而如何最好地挖掘相关表型数据仍是一个未解决的挑战。在此,我们引入因子分析作为一种数据驱动工具,用于定义细胞表型和分析化合物活性。该方法在保留相关信息的同时可大幅减少数据量,且用于量化表型的数据衍生因子具有可辨别的生物学意义。我们对用细胞周期状态荧光标记物染色的细胞进行因子分析,以分析一个化合物库,并将命中的化合物聚类为七个表型类别。然后,我们比较了活性化合物的表型谱、化学相似性和预测的蛋白质结合活性。通过整合这些测量的和潜在的生物活性的不同描述符,我们可以有效地得出作用机制推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验