Suppr超能文献

用于化学图像分析的光谱识别映射器。

A spectral identity mapper for chemical image analysis.

作者信息

Turner John F, Zhang Jing, O'Connor Anne

机构信息

Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA.

出版信息

Appl Spectrosc. 2004 Nov;58(11):1308-17. doi: 10.1366/0003702042475529.

Abstract

Generating chemically relevant image contrast from spectral image data requires multivariate processing algorithms that can categorize spectra according to shape. Conventional chemometric techniques like inverse least squares, classical least squares, multiple linear regression, principle component regression, and multivariate curve resolution are effective for predicting the chemical composition of samples having known constituents, but they are less effective when a priori information about the sample is unavailable. We have developed a multivariate technique called spectral identity mapping (SIM) that reduces the dependence of spectral image analysis on training datasets. The qualitative SIM method provides enhanced spectral shape specificity and improved chemical image contrast. We present SIM results of spectral image data acquired from polymer-coated paper substrates used in the manufacture of pressure sensitive adhesive tapes. In addition, we compare the SIM results to results from spectral angle mapping (SAM) and cosine correlation analysis (CCA), two closely related techniques.

摘要

从光谱图像数据生成与化学相关的图像对比度需要能够根据形状对光谱进行分类的多变量处理算法。传统的化学计量技术,如逆最小二乘法、经典最小二乘法、多元线性回归、主成分回归和多元曲线分辨率,对于预测具有已知成分的样品的化学成分是有效的,但当关于样品的先验信息不可用时,它们的效果就会变差。我们开发了一种称为光谱身份映射(SIM)的多变量技术,该技术减少了光谱图像分析对训练数据集的依赖。定性SIM方法提供了增强的光谱形状特异性和改进的化学图像对比度。我们展示了从用于制造压敏胶带的聚合物涂层纸基材获取的光谱图像数据的SIM结果。此外,我们将SIM结果与光谱角映射(SAM)和余弦相关分析(CCA)这两种密切相关技术的结果进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验