Kosmopoulos Victor, Schizas Constantin, Keller Tony S
Hôpital Orthopédique de la Suisse Romande, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
J Biomech. 2008;41(3):515-22. doi: 10.1016/j.jbiomech.2007.10.020.
Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.
相对少量的微损伤被认为会对骨骼的力学性能产生重大影响。甚至在微裂纹出现之前,力学性能(如模量)就可能会显著降低。本研究使用一种新型的非线性微损伤有限元(FE)算法来模拟高密度小梁骨的低周疲劳行为。我们旨在研究弥散性微损伤积累以及随之而来的模量降低(无需小梁支柱完全断裂)是否可能是低周疲劳失效(定义为表观模量降低30%)的潜在机制。一个基于显微CT构建的有限元模型接受了单周期单调压缩试验以及恒定和变幅加载方案,以研究低周疲劳微损伤的萌生和积累。使用四种损伤准则来模拟微裂纹萌生:骨单元模量降低30%、40%、50%和60%(el-MR)。使用这四种不同的组织水平损伤准则评估结构(表观)损伤,结果表明,对于30%、40%、50%和60% el-MR模型,试件分别在72、316、969和1518次循环时发生疲劳失效。基于50% el-MR模型的模拟结果与先前发表的实验结果一致。在失效循环次数(N)和有效应变(Δσ/E(0))之间发现了一种强烈的、显著的非线性幂律关系:N = 1.394×10^(-25)(Δσ/E(0))^(-12.17),r^2 = 0.97,p < 0.0001。结果表明,微损伤和微裂纹扩展(无需小梁支柱完全断裂)是高密度小梁骨失效的机制。此外,该模型与先前的数值疲劳模拟结果一致,表明少量小梁的微损伤会导致试件模量相对大幅降低并迅速失效。