Jones Jon, Otu Hasan H, Grall Franck, Spentzos Dimitrios, Can Handan, Aivado Manuel, Belldegrun Arie S, Pantuck Allan J, Libermann Towia A
Beth Israel Deaconess Medical Center Genomics Center and Dana Farber/Harvard Cancer Center Cancer Proteomics Core, Boston, Massachusetts, USA.
J Urol. 2008 Feb;179(2):730-6. doi: 10.1016/j.juro.2007.09.016. Epub 2007 Dec 20.
To detect a predictive protein profile that distinguishes interleukin-2 therapy responders and nonresponders among patients with metastatic renal cell carcinoma we used surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.
Protein extracts from 56 patients with metastatic clear cell patients renal cell carcinoma obtained from radical nephrectomy specimens before interleukin-2 therapy were applied to protein chip arrays of different chromatographic properties and analyzed using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. A class prediction algorithm was applied to identify a subset of protein peaks with expression values associated with interleukin-2 response status. Multivariate analysis was performed to assess the association between the proteomic profile and interleukin-2 response status, controlling for the effect of lymphadenopathy.
From 513 protein peaks we discovered a predictor set of 11 that performed optimally for predicting interleukin-2 response status with 86% accuracy (Fisher's p <0.004, permutation p <0.01). Results were validated in an independent data set with 72% overall accuracy (p <0.05, permutation p <0.01). On multivariate analysis the proteomic profile was significantly associated with the interleukin-2 response when corrected for lymph node status (p <0.04).
We identified and validated a proteomic pattern that is an independent predictor of the interleukin-2 response. The ability to predict the probability of the interleukin-2 response could permit targeted selection of the patients most likely to respond to interleukin-2, while avoiding unwanted toxicity in patients less likely to respond. This proteomic predictor has the potential to significantly aid clinicians in the decision making of appropriate therapy for patients with metastatic renal cell carcinoma.
为了在转移性肾细胞癌患者中检测出一种能区分白细胞介素-2治疗反应者和无反应者的预测性蛋白质谱,我们使用了表面增强激光解吸/电离飞行时间质谱法。
从56例转移性透明细胞肾细胞癌患者根治性肾切除标本中获取白细胞介素-2治疗前的蛋白质提取物,将其应用于具有不同色谱特性的蛋白质芯片阵列,并使用表面增强激光解吸/电离飞行时间质谱法进行分析。应用分类预测算法来识别一组与白细胞介素-2反应状态相关的表达值的蛋白质峰子集。进行多变量分析以评估蛋白质组学谱与白细胞介素-2反应状态之间的关联,并控制淋巴结病的影响。
从513个蛋白质峰中,我们发现了一组11个预测因子,其对预测白细胞介素-2反应状态的表现最佳,准确率为86%(Fisher p<0.004,置换p<0.01)。在一个独立数据集中验证了结果,总体准确率为72%(p<0.05,置换p<0.01)。在多变量分析中,校正淋巴结状态后,蛋白质组学谱与白细胞介素-2反应显著相关(p<0.04)。
我们识别并验证了一种蛋白质组学模式,它是白细胞介素-2反应的独立预测因子。预测白细胞介素-2反应概率的能力可以使我们有针对性地选择最可能对白细胞介素-2有反应的患者,同时避免对不太可能有反应的患者产生不必要的毒性。这种蛋白质组学预测因子有可能显著帮助临床医生为转移性肾细胞癌患者做出合适治疗的决策。