Suppr超能文献

使用电荷耦合聚合物微粒和微磁体调节口服大分子的生物利用度。

The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules.

作者信息

Teply Benjamin A, Tong Rong, Jeong Seok Y, Luther Gaurav, Sherifi Ines, Yim Christopher H, Khademhosseini Ali, Farokhzad Omid C, Langer Robert S, Cheng Jianjun

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Biomaterials. 2008 Mar;29(9):1216-23. doi: 10.1016/j.biomaterials.2007.11.018. Epub 2007 Dec 21.

Abstract

Protein drugs have low bioavailability after oral administration, which is due in part to fast transit of the drugs or drug delivery vehicles through the gastrointestinal tract. Increasing the time that the drugs spend in the intestine after dosing would allow for greater absorption and increased bioavailability. We developed a formulation strategy that can be used to prolong intestinal retention of drug delivery vehicles without substantial alterations to current polymeric encapsulation strategies. A model drug, insulin, was encapsulated in negatively charged poly(lactic-co-glycolic acid) (PLGA) microparticles, and the microparticles were subsequently mixed with positively charged micromagnets, whose size will prevent them from being absorbed. Stable complexes formed through electrostatic interaction. The complexes were effectively immobilized in vitro in a model of the mouse small intestine by application of an external magnetic field. Mice that were gavaged with radio-labeled complexes and fitted with a magnetic belt retained 32.5% of the (125)I-insulin in the small intestine compared with 5.4% for the control group 6h after administration (p=0.005). Furthermore, mice similarly gavaged with complexes encapsulating insulin (120 Units/kg) exhibited long-term glucose reduction in the groups with magnetic belts. The corresponding bioavailability of insulin was 5.11% compared with 0.87% for the control group (p=0.007).

摘要

蛋白质药物口服后的生物利用度较低,部分原因是药物或药物递送载体在胃肠道中的快速转运。增加给药后药物在肠道内的停留时间将有助于提高吸收并增加生物利用度。我们开发了一种制剂策略,可用于延长药物递送载体在肠道内的滞留时间,而无需对当前的聚合物包封策略进行重大改变。将模型药物胰岛素包裹在带负电荷的聚乳酸-羟基乙酸共聚物(PLGA)微粒中,随后将这些微粒与带正电荷的微磁体混合,微磁体的尺寸会阻止它们被吸收。通过静电相互作用形成稳定的复合物。通过施加外部磁场,复合物在小鼠小肠模型中有效地在体外固定。灌胃放射性标记复合物并佩戴磁带的小鼠在给药后6小时,小肠中保留了32.5%的(125)I-胰岛素,而对照组为5.4%(p=0.005)。此外,同样灌胃包裹胰岛素(120单位/千克)复合物的小鼠,佩戴磁带的组表现出长期的血糖降低。胰岛素相应的生物利用度为5.11%,而对照组为0.87%(p=0.007)。

相似文献

1
The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules.
Biomaterials. 2008 Mar;29(9):1216-23. doi: 10.1016/j.biomaterials.2007.11.018. Epub 2007 Dec 21.
2
Magnetically responsive polymeric microparticles for oral delivery of protein drugs.
Pharm Res. 2006 Mar;23(3):557-64. doi: 10.1007/s11095-005-9444-5. Epub 2006 Jan 1.
3
Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles.
J Microencapsul. 2008 Jun;25(4):248-56. doi: 10.1080/02652040801903843.
4
Protein instability in poly(lactic-co-glycolic acid) microparticles.
Pharm Res. 2000 Oct;17(10):1159-67. doi: 10.1023/a:1026498209874.
5
6
Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration.
Eur J Pharm Sci. 2012 Apr 11;45(5):632-8. doi: 10.1016/j.ejps.2012.01.002. Epub 2012 Jan 10.
7
PLGA microparticles: possible vehicles for topical drug delivery.
Int J Pharm. 2001 Sep 11;226(1-2):181-4. doi: 10.1016/s0378-5173(01)00811-0.
8
Controlled release from coated polymer microparticles embedded in tissue-engineered scaffolds.
J Drug Target. 2001;9(6):431-8. doi: 10.3109/10611860108998777.
10
Novel composite microparticles for protein stabilization and delivery.
Eur J Pharm Sci. 2009 Feb 15;36(2-3):226-34. doi: 10.1016/j.ejps.2008.09.008. Epub 2008 Oct 2.

引用本文的文献

1
Oral Delivery of Gemcitabine-Loaded Glycocholic Acid-Modified Micelles for Cancer Therapy.
ACS Nano. 2023 Sep 26;17(18):18074-18088. doi: 10.1021/acsnano.3c04793. Epub 2023 Sep 17.
2
Villi Inspired Mechanical Interlocking for Intestinal Retentive Devices.
Adv Sci (Weinh). 2023 Oct;10(30):e2301084. doi: 10.1002/advs.202301084. Epub 2023 Jul 14.
3
An Overview of Microparticulate Drug Delivery System and its Extensive Therapeutic Applications in Diabetes.
Adv Pharm Bull. 2022 Aug;12(4):730-746. doi: 10.34172/apb.2022.075. Epub 2021 Oct 4.
4
Immense Insulin Intestinal Uptake and Lymphatic Transport Using Bile Acid Conjugated Partially Uncapped Liposome.
Mol Pharm. 2018 Oct 1;15(10):4756-4763. doi: 10.1021/acs.molpharmaceut.8b00708. Epub 2018 Aug 29.
5
Oral Nanoparticles Exhibit Specific High-Efficiency Intestinal Uptake and Lymphatic Transport.
ACS Nano. 2018 Sep 25;12(9):8893-8900. doi: 10.1021/acsnano.8b04315. Epub 2018 Aug 8.
7
Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery.
Int J Nanomedicine. 2014 May 2;9:2127-36. doi: 10.2147/IJN.S59075. eCollection 2014.
8
Materials for diabetes therapeutics.
Adv Healthc Mater. 2012 May;1(3):267-84. doi: 10.1002/adhm.201200037. Epub 2012 Apr 5.
9
Localization of magnetic pills.
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2252-7. doi: 10.1073/pnas.1016367108. Epub 2011 Jan 21.
10
The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells.
Biomaterials. 2010 Apr;31(11):3043-53. doi: 10.1016/j.biomaterials.2010.01.009. Epub 2010 Feb 1.

本文引用的文献

3
Magnetically responsive polymeric microparticles for oral delivery of protein drugs.
Pharm Res. 2006 Mar;23(3):557-64. doi: 10.1007/s11095-005-9444-5. Epub 2006 Jan 1.
4
Oral delivery of macromolecules using intestinal patches: applications for insulin delivery.
J Control Release. 2004 Jul 23;98(1):37-45. doi: 10.1016/j.jconrel.2004.04.013.
5
Magnetically modulated therapeutic systems.
Int J Pharm. 2004 Jun 11;277(1-2):19-24. doi: 10.1016/j.ijpharm.2003.03.002.
6
Challenges for the oral delivery of macromolecules.
Nat Rev Drug Discov. 2003 Apr;2(4):289-95. doi: 10.1038/nrd1067.
7
Design of biodegradable particles for protein delivery.
J Control Release. 2002 Jan 17;78(1-3):15-24. doi: 10.1016/s0168-3659(01)00486-2.
8
Therapeutic application of repetitive transcranial magnetic stimulation: a review.
Clin Neurophysiol. 2001 Aug;112(8):1367-77. doi: 10.1016/s1388-2457(01)00585-5.
9
Evaluation of nano- and microparticle uptake by the gastrointestinal tract.
Adv Drug Deliv Rev. 1998 Dec 1;34(2-3):221-233. doi: 10.1016/s0169-409x(98)00041-6.
10
Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract.
Adv Drug Deliv Rev. 1998 Dec 1;34(2-3):191-219. doi: 10.1016/s0169-409x(98)00040-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验